SAMPLE COURSE OUTLINE

ENGINEERING STUDIES
ATAR YEAR 11
Copyright

© School Curriculum and Standards Authority, 2014

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority’s moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence

Disclaimer

Any resources such as texts, websites and so on that may be referred to in this document are provided as examples of resources that teachers can use to support their learning programs. Their inclusion does not imply that they are mandatory or that they are the only resources relevant to the course.
Sample course outline

Engineering Studies – ATAR Year 11

Unit 1 and Unit 2

Semester 1

<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
</table>
| **Term 1**
1–2 | Overview of unit and assessment requirements
Introduction to design process
Task 1: Design project one
• development of a design folio
• design brief, and investigation
Engineering design process – Investigating
• develop a design brief
• use research skills to identify existing solutions/products
• describe and analyse existing solutions/products |
| 3–5 | Learning of specialist theory and specific understandings from either specialty field; Mechanical or Mechatronics
Task 2: Investigate materials and components
• research materials and components suitable for the development of a solution
• research forms of energy
• determine form of energy suitable for the project
Investigating
Core Materials – classify types of materials
Engineering in Society – definitions, and forms of energy
Specialty fields: Mechanical materials, **Mechatronics** components |
| 6–7 | **Task 3: Developing a solution for Project one**
• through annotated pictorial drawings of ideas to an final drawn proposal
• annotated orthogonal concept drawings either CAD or hand drawn
• calculations to estimate design function
Devising
• produce annotated pictorial drawings of design ideas
• analyse the chosen option to be used as the solution
Fundamental Engineering calculations
Quantity estimates |
| 8–10 | **Task 4: Pre-production**
• working drawings – detailed orthogonal drawings
• lists of materials, parts and components
• develop production plan on a timeline
Task 5: Pre-production skills
Develop production skills; apply safety and practice task/s to develop practical hand and machine skills. Modelling or prototype
Producing
• present specifications for the selected solution
 • dimensioned pictorial and orthographic drawings
 • materials selected, parts lists, costing of prototype or working model
• develop and use a timeline to construct and test the solution
• construct solution by selecting and using appropriate tools and machines, following safe work practices |
Term 2

<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–5</td>
<td>Task 6: Manufacture of proposed Project one
Using prepared production plan, materials and available equipment; record progress in design folio.</td>
</tr>
<tr>
<td>6</td>
<td>Task 7: Evaluation of completed Project one
Prepare written report on and photographs of completed product. Evaluating – evaluate the final solution
• test the solution for correct function and document using checklists and test data</td>
</tr>
<tr>
<td>Examination weeks 7–8</td>
<td>Task 8: Semester 1 examination – of approximately 2 hours, using a modified examination design brief from the Year 12 syllabus</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>Overview of unit and assessment requirements
Re-introduction to design process, and development of a design folio
Task 9: Design Project two
design process
• determine design brief
• investigate and develop ideas
Engineering design process
Investigating
• develop a design brief
• describe and analyse existing solutions/products
• research and describe materials and components relevant to the design brief
• consider appropriate forms of energy supplies</td>
</tr>
<tr>
<td>4–6</td>
<td>Learning of specialist theory and specific understandings from either specialty field; Mechanical or Mechatronics
Task 10: Investigate materials and components
• research materials and components suitable for the development of a solution
• research efficiency of selected forms of energy
• research obsolescence
Core Materials – physical properties of materials
• fitness for purpose
 ▪ identify and describe the required properties of a material for a specified application
Energy – efficiency
Engineering in Society – obsolescence
Specialty fields: Mechanical materials, Mechatronics components</td>
</tr>
<tr>
<td>7–8</td>
<td>Task 11: Developing a solution for Project two
• through annotated pictorial drawings of ideas to an final drawn proposal
• annotated orthographic concept drawings either CAD or hand drawn
• calculations to estimate design function
Devising
• produce annotated pictorial drawings of design ideas
• analyse the chosen option to be used as the solution
Fundamental Engineering calculations
Quantity estimates</td>
</tr>
<tr>
<td>Week</td>
<td>Key teaching points</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Term 3 9–10 | **Task 12: Pre-production**
 • working drawings – detailed orthogonal drawings
 • lists of materials, parts and components
 • develop production plan on a timeline
 Producing
 • present specifications for the selected solution |
| Term 4 1 | **Task 13: Pre-production skills**
 Develop production skills; apply safety and practice task/s to develop practical hand and machine skills. Modelling or prototype |
| 2–4 | **Task 14: Manufacture of proposed Project two**
 Using prepared production plan, materials and available equipment; record progress in design folio. |
| 6 | **Task 15: Evaluation of completed Project two**
 Prepare written report on and photographs of completed product.
 Evaluating
 • evaluate the final solution in terms of:
 ▪ meeting the requirements of the design brief
 ▪ function and finish of the product
 ▪ variations and changes to the design |
| Examination weeks 5–6 | **Task 16: Semester 2 examination** – of approximately 2 hours, using a modified examination design brief from the Year 12 syllabus |