SAMPLE COURSE OUTLINE

ENGINEERING STUDIES
ATAR YEAR 12
Sample course outline

Engineering Studies ATAR Year 12

Unit 3 and Unit 4

Semester 1

<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
</table>
| 1–3 | Overview of unit and course outline
Introduction to Engineering design process, and development of a design folio
Core content: Engineering design process
 Investigating
 • develop a comprehensive design brief
 • identify and assess existing solutions or similar products that are identified, using a variety of research skills
 Core content: Materials
 • define and classify types of materials
 Task 1: Design Project one
 • design brief – description of problem, need or opportunity
 • identify and research examples of existing solutions
 • develop a list of requirements and restrictions |
| 4–6 | **Core content: Engineering in society**
 • relationships between energy, power and work, and different forms of energy; non-renewable and renewable sources of energy
 Core content: Engineering design process
 Devising
 • produce annotated, pictorial drawings of design ideas
 • produce annotated, orthographic drawings of design ideas
 • analyse and justify the choice of option to be used as the solution
 Task 2: Devise concepts for Project one and select the best option for the solution
 • conduct additional research, produce sketches and drawings of concepts, and evaluate these to select the best option
 Specialist engineering fields: Learning of specialist theory and specific understandings from either Mechanical or Mechatronics
 Mechanical: Materials
 • processes for steel alloys
 • stress/strain graphs
 • use of formulae for stress, strain and Young’s modulus
 • convert between stress units
 • derive values from graphical and tabled data
 • properties of materials
 or
 Mechatronics: Electrical/electronics
 Components
 • listed circuit symbols
 • general characteristics of listed components
 • read and sketch simple circuit diagrams
 • read and understand listed component markings
 Laws and principles
 • Ohm’s law
 • Kirchhoff’s laws
 • power
 • cells and batteries
 • resistor networks
 • capacitor networks
 • digital input
 • quantities |
<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
</table>
| **7–9** | **Core content: Fundamental engineering calculations**
• dimensional, perimeter and surface area
Specialist engineering fields: Learning of specialist theory and specific understandings from either
Mechanical or Mechatronics
Mechanical: Statics
• moments
• three conditions for equilibrium
• vertical and horizontal components
• reaction forces (two supports only)
• unknown external force or distance variable
• reaction forces (beams)
Mechatronics: Systems and control
• systems/control diagrams
• flowcharts
Core content: Engineering design process
Devising (continued)
• produce annotated, pictorial drawings of design ideas
• produce annotated, orthographic drawings of design ideas
• analyse and justify the choice of option to be used as the solution
Task 2 (continued): Devise concepts for Project one and select the best option for the solution
• conduct more research, produce and refine sketches and drawings of concepts, and evaluate these to select the best option for the solution
Core content: Engineering design process
Producing
• present specifications for the selected solution
 • dimensioned pictorial and orthographic drawings
 • orthographic drawings and sketches as 3rd angle projections, and include lines and dimensioning
 • materials selection
 • parts lists
 • costing of prototype or working model
Task 3: Produce specifications for the selected solution for Project one
• working drawings
• lists of materials and costing
• develop production plan on a timeline |
| **10–13** | **Specialist engineering fields:** Learning of specialist theory and specific understandings from either
Mechanical or Mechatronics
Mechanical: Statics
• shear force and bending moment diagrams, with shear force and bending moment calculations
Mechatronics: Systems and control
• interfacing with microcontroller
Core content: Engineering design process
Producing
• develop and use timeline for construction and testing of solution
• construct solution by selecting and using appropriate tools and machines, and by following safe work practices
• test the solution for correct function and document using checklists and test data
Task 4: Production of Project one
• construct the proposed solution, using prepared production plan, materials and available equipment
• record progress in design folio |
Semester 1

<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
<tbody>
<tr>
<td>14–15</td>
<td>Core content: Engineering design process
Evaluating
• evaluate the final solution in terms of:
 ▪ meeting the requirements of the design brief
 ▪ modifications and changes to the design and processes during production
 ▪ refinements and changes for future development
Task 5: Evaluate completed Project one
• written report on, and photographs of, completed Project one
Task 6: Semester 1 Examination – of approximately 2.5 hours, using modified examination design brief from the Year 12 syllabus</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>Overview of unit and assessment requirements
Re-introduction to Engineering design process, and development of a design folio
Core content: Engineering design process
Investigating
• develop a comprehensive design brief
• identify and assess existing solutions or similar products that are identified, using a variety of research skills
• research and critique materials and components relevant to the design brief
• consider different and appropriate sources of energy
Task 7: Design Project two
Note: Project two may be completely separate from Project one or it may be the extension/completion of the theme used for Project one.
• design brief – description of problem, need or opportunity
• identify and research examples of existing solutions
• develop a list of requirements and restrictions</td>
</tr>
</tbody>
</table>
| 4–6 | **Core content: Materials**
• define physical properties of materials
• fitness for purpose
 ▪ identify and justify the required properties of a material for a specified application
Core content: Engineering design process
Devising
• produce annotated, pictorial drawings of design ideas
• produce annotated, orthographic drawings of design ideas
• analyse and justify the choice of option to be used as the solution
Task 8: Devise concepts for Project two and select the best option for the solution
• conduct research, produce sketches and drawings of concepts
• evaluate these to select the best option
Specialist engineering fields: Learning of specialist theory and specific understandings from either Mechanical or Mechatronics
Mechanical: Materials
• factor of safety
and **Statics**
• second moment of area
• deflection of beams
• method of sections for simply supported pin-jointed trusses or
<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
</table>
| 7–9 | **Mechatronics: Laws and principles**
 - analogue inputs
 - NPN transistor
 - diodes
 - voltage regulator
 - unfamiliar formula
 - data extraction

Core content: Fundamental engineering calculations
- volume
- density
- quantity estimates
- energy
- efficiency
- unfamiliar formula

Core content: Engineering design process
Devising (continued)
- produce annotated, pictorial drawings of design ideas
- produce annotated, orthographic drawings of design ideas
- analyse and justify the choice of option to be used as the solution

Task 8 (continued): Devise concepts for Project two and select the best option for the solution
- progress through theory, refine drawings and concepts to the best possible solution

Core content: Engineering design process
Producing
- present specifications for the selected solution
- dimensioned pictorial and orthographic drawings
- orthographic drawings and sketches as 3rd angle projections, and include lines and dimensioning
- materials selection
- parts lists
- costing of prototype or working model

Task 9: Produce specifications for the selected solution
- working drawings
- lists of materials and costing
- develop production plan on a timeline

Core content: Engineering in society: Life cycle analysis of engineered products
- the stages of the life cycle of engineered products
- impacts for society, business and the environment that occur during the life cycle of engineered products

Task 10: Research and analyse the life cycle of an engineered product
- research and report on the stages of the life cycle of an engineered product

| 10–13 | **Specialist engineering fields:** Learning of specialist theory and specific understandings from either Mechanical or Mechatronics
 Mechanical: Dynamics
 - constant acceleration (straight line motion)
 - potential energy
 - kinetic energy
 - energy and energy conservation
 - work
 - efficiency
 - power
 Mechatronics: Systems and control
 - interfacing with microcontroller
 - types of motion
 - mechanical drive systems
 - calculations
 - quantities |
<table>
<thead>
<tr>
<th>Week</th>
<th>Key teaching points</th>
</tr>
</thead>
</table>
| | **Core content: Engineering design process**
 | **Producing**
 | • develop and use timeline for construction and testing of solution
 | • construct solution by selecting and using appropriate tools and machines, and by following safe work practices
 | • test the solution for correct function and document, using checklists and test data
 | **Task 11: Production of Project two**
 | • construct the proposed solution, using prepared production plan, materials and available equipment
 | • record progress in design folio
| 14 | **Core content: Engineering design process**
 | **Evaluating**
 | • evaluate the final solution in terms of:
 | ▪ meeting the requirements of the design brief
 | ▪ safety, function and finish of the product
 | ▪ modifications and changes to the design and processes during production
 | ▪ refinements and changes for future development
 | **Task 12: Evaluate Project two**
 | • written report on, and photographs of, completed Project two
| 15 | **Task 13: Semester 2 Examination** – of approximately three hours, using examination design brief from the Year 12 syllabus