

ADDITIONAL SYLLABUS SUPPORT BOOKLET

COMPUTER SCIENCE
ATAR YEARS 11 AND 12

2022/13988v7

Acknowledgement of Country

Kaya. The School Curriculum and Standards Authority (the Authority) acknowledges that our offices
are on Whadjuk Noongar boodjar and that we deliver our services on the country of many
traditional custodians and language groups throughout Western Australia. The Authority
acknowledges the traditional custodians throughout Western Australia and their continuing
connection to land, waters and community. We offer our respect to Elders past and present.

Copyright

© School Curriculum and Standards Authority, 2022

This document – apart from any third-party copyright material contained in it – may be freely copied, or
communicated on an intranet, for non-commercial purposes in educational institutions, provided that the
School Curriculum and Standards Authority (the Authority) is acknowledged as the copyright owner, and that
the Authority’s moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968
or with prior written permission of the Authority. Copying or communication of any third-party copyright
material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright
owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the
terms of the Creative Commons Attribution 4.0 International licence.

Disclaimer

Any resources such as texts, websites and so on that may be referred to in this document are provided as
examples of resources that teachers can use to support their learning programs. Their inclusion does not imply
that they are mandatory or that they are the only resources relevant to the course.

https://creativecommons.org/licenses/by/4.0/

Contents
Purpose ... 1

Programming ... 1

Software licensing ... 1

Conventions for writing pseudocode .. 1

Programming control structures ... 2

Modularisation .. 4

Object oriented programming .. 6

Common algorithms ... 8

Network communications .. 14

Key protocols associated with layers in models ... 14

Network diagram conventions (CISCO)... 15

Cyber security .. 17

Types of malware .. 17

Common methods of encryption.. 17

Data management ... 18

Entity relationship diagrams ... 18

Data dictionaries ... 19

Normalisation.. 19

Common SQL ... 25

Appendices .. 27

Control Structure Python Examples .. 27

Object Oriented Python Examples .. 29

1

Additional syllabus support booklet | Computer Science| ATAR course | Year 11&12

Purpose
This document is intended to support the delivery of the Year 11 and Year 12 Computer Science
Australian Tertiary Admission Rank (ATAR) syllabuses. It contains conventions, standards,
specifications and examples to provide teachers and students with clarity relating to the expected
depth of teaching of some relevant content points in each syllabus.

Programming
Python is the prescribed programming language for the Computer Science ATAR course and will be
used in ATAR examination questions related to programming.

Software licensing
• Proprietary
• Open source
 Public domain
 Permissive
 GNU Lesser General Public License
 Copy left

Conventions for writing pseudocode
Although there is no specific format for writing pseudocode, the following conventions should be
used in this course.

• Use capital letters for keywords.
• Indent lines of code to show the structure of the code and identify control structures; for

example, commands in a loop should be indented.
• The end of structural elements and control structures should be explicitly indicated; for example,

IF…END IF.
• Use the symbol = (a single equal sign) to indicate an assignment statement.
• Use the symbol == (two equal signs) to indicate a comparison statement.
• Initialise all variables at the start of each module.
• Clearly indicate constants using the CONST keyword.
• Clearly indicate global variables using the GLOBAL keyword.

Common commands for writing pseudocode

Command Pseudocode

User input INPUT(num)

User output PRINT(“Hello world!”)

Assignment =

Equals (comparison) ==

Not equal to !=

2

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Command Pseudocode

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=

Integer division DIV or // e.g. 7 // 2 = 3

Modulus (remainder) MOD or % e.g. 7 % 2 = 1

OR x < 1 OR x > 10

AND x > 1 AND x < 10

Arrays scores = []

scores[0] = 15
scores[1] = 16

scores.append(12) # add element to end of array

scores.length # gives the number of elements in an array

Dictionaries costOfGear = {
“mask”: 2,
“wetsuit: 5,
“BCD”: 5,
“tank”: 5
}

costOfGear[“fins”] = 2 # add new key:value pair
costOfGear[“wetsuit”] = 6 # update value of wetsuit

cost = costOfGear[“mask”] # value of cost will be 2

costOfGear.keys # list of all keys in the dictionary
costOfGear.values # list of all values in the dictionary
costOfGear.items # list of all key/value pairs in the dictionary

Programming control structures
Structure Example

Sequence: INPUT(num1)
INPUT(num2)
product = num1 * num2
PRINT(product)

One-way selection:

IF condition THEN
do something

END IF

speed = 50
IF speed > 50 THEN

PRINT(“You are speeding”)
END IF

Two-way selection:

IF condition THEN
do something

speed = 50
IF speed > 50 THEN

3

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Structure Example

ELSE
do something

END IF

PRINT(“You are speeding”)
ELSE

PRINT(‘You are not speeding”)
END IF

Multi-way selection:

Method 1 – IF…ELSE IF…ELSE
IF condition THEN

do something
ELSE IF condition THEN

do something
ELSE

do something
END IF

Method 2 – CASE statement
CASE value OF

choice 1: do something
choice 2: do something
OTHERWISE: do something

END CASE

Method 1 – IF…ELSE IF…ELSE
speed = 50
IF speed < 20 THEN

PRINT(“You are going too slow”)
ELSE IF speed > 50 THEN

PRINT(‘You are speeding”)
ELSE

PRINT(‘You are not speeding”)
END IF

Method 2 – CASE statement
colour = ‘red’
CASE colour OF

’red’: PRINT(“Stop”)
‘yellow’: PRINT (“Slow down”)
‘green’: PRINT(“Go”)
OTHER: PRINT(“Incorrect colour”)

END CASE

Test-first loop (WHILE)

WHILE condition is True
do something

END WHILE

num = 0
WHILE num < 10

PRINT(“The number is “ + num)
num = num + 1

END WHILE

Test-last loop (REPEAT UNTIL)

REPEAT
do something

UNTIL condition I True

REPEAT
INPUT(Age)

UNTIL (Age >= 6) AND (Age <= 17)
PRINT (Age)

Fixed loop (FOR)

FOR variable = start TO finish [STEP increment]
do something

END FOR

FOR num = 1 TO 10
PRINT(“The number is “ + num)

END FOR

FOR num = 10 TO 1 STEP –1

 PRINT(num)

END FOR

PRINT("Blast off!”)

4

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Structure Example

FOR num = 1 TO 100 STEP 10
PRINT(“The number is “ + num)

END FOR

Modularisation
Modularisation is a methodology that involves breaking a problem down into smaller, less complex
parts. Benefits of modularisation include:
• it allows code to be reused and reduced code repetition
• it allows more people to work on a project – each person can work on separate modules
• it breaks a large complex problem down into smaller problems to make it easier to solve
• it makes it easier to read algorithms and programs
• it makes it quicker and easier to find errors.

As in most modern programming languages, there is no distinction made between modules and
functions in the ATAR syllabus – the two terms can be used interchangeably in pseudocode. When a
value needs to be returned from a module, then the RETURN keyword should be used.

Good programming practice suggests that a function should perform a single task, and where
necessary return a single value using the RETURN keyword. The use of reference parameters in place
of returning a value from a function should be avoided wherever possible.

Without Modularisation With Modularisation

FUNCTION Main
 INPUT(length)
 INPUT(height)
 area1 = length * height

 INPUT(length)
 INPUT(height)
 area2 = length * height

 INPUT(length)
 INPUT(height)
 area3 = length * height

 total = area1 + area2 + area3

 PRINT(“The total area is”, total)
END Main

FUNCTION Main
 INPUT(length)
 INPUT(height)
 area1 = CalculateArea(length, height)

 INPUT(length)
 INPUT(height)
 area2 = CalculateArea(length, height)

 INPUT(length)
 INPUT(height)
 area3 = CalculateArea(length, height)

 total = area1 + area2 + area3
 PRINT(“The total area is”, total)
END Main

FUNCTION CalculateArea(length, height)
 area = length * height

RETURN area
END CalculateArea

The code on the left repeats the same lines of code three times where it calculates the area based
on the length and height. The code on the right reduces this repetition by moving those lines of code
to a separate module.

5

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Parameters

We use parameters to pass values between functions. There are two types of parameters.

• Value parameters: a copy of the actual data is passed to the function that is being called. Any
changes to the parameter inside the function do not affect the original value.

• Reference parameters: a pointer to the variable’s memory location is passed to the function
being called. Any changes to the parameter cause the original value to be changed.

In most programming languages, simple data types will be passed by value, and complex data types
(such as arrays and records) will be passed by reference.

To indicate a parameter is a reference parameter, it is suggested that the REF keyword is used. A
reference parameter would be used when passing a variable that could be quite large (such as a list
of objects). For example:

FUNCTION DoSomethingToMyList(REF bigList)

END DoSomethingToMyList

aReallyBigList = [obj1, obj2, … , obj1000]

DoSomethingToMyList(aReallyBigList)

6

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Object-oriented programming
Object-oriented programming (OOP) programs are based around the data that is needed and the
operations that need to be performed on that data, rather than the procedural logic of the program.

Classes: user-defined template that represents an object. This defines the attributes of each object
and the methods that can be performed.

Objects: specific instances of a class using data for that instance.

Attributes: data stored about each object that show the current state of the object.

Methods: functions defined in the class that define the behaviours of the object.

Creating a new class
CLASS Animal
 Attributes:
 name
 hunger = 5
 food_list = []

 Methods:
 FUNCTION Animal(new_name)
 name = new_name
 END Animal

 FUNCTION eat(food)
 result = ""
 IF food IN food_list
 result = "Not hungry"
 IF hunger > 0
 hunger = hunger - 1
 result = "That was yummy"
 END IF
 ELSE
 result = "I don't like that food"
 END IF
 RETURN result
 END eat

 FUNCTION is_hungry()
 RETURN hunger > 0
 END is_hungry
END Animal

Instantiating and using an object:

Instantiation refers to creating a specific object from a class that can be used in your program.

horse = new Animal(“Silver”) #Creates a horse with the name
"Silver"horse.food_list.append(“grass”) # Will add grass to the food_list

7

Additional syllabus support document | Computer Science| Year 11&12 ATAR

horse.eat(“potato”) # Will return “I don’t like that food”

Inheritance

One of the powerful features of OOP is that it allows the programmer to easily re-use code by
classifying objects and inheriting common features from a base class. For example, a dog is a type of
animal that has the base attributes of hunger and food_list. The Dog class sets a default food_list
specific to dogs and adds two new attributes, has_fur and legs.

CLASS Dog : Animal
 Attributes:
 has_fur = True
 legs = 4
 food_list = [“meat”, “bones”]

 Methods:
 FUNCTION bark()
 RETURN name + “is barking”
 END

 FUNCTION number_of_legs()
 RETURN legs
 END number_of_legs
END Dog

CLASS Fish : Animal
 Attributes:
 has_fins = True
 food_list = [‘algae’, ‘plankton’]

 Methods:
 FUNCTION swim()
 RETURN name + ‘is swimming’
 END swim
END Fish

Fido = new Dog()
PRINT(fido.number_of_legs())

Goldie = new Fish()
PRINT(goldie.has_fins)

8

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Common algorithms

Arrays

Load an array

FUNCTION LoadArray
name = “”
i = 0
names = []
PRINT(“Enter a name: ”)
INPUT(name)
WHILE name != “”

names[i] = name
i = i + 1
INPUT(name)

END WHILE
PRINT(“There were”, i, “names entered.”)

END LoadArray

Print contents of an array

FUNCTION PrintArray
names = [“Peter”, “Jane”, “Hugo”, “Kai”, “Sally”, “Arman”]
FOR i = 0 TO names.length – 1

PRINT names[i]
END FOR

END PrintArray

Add contents of an array

FUNCTION AddArray
numbers = [4, 8, 23, 52, 3, 27, 86]
total = 0
FOR i = 0 TO numbers.length – 1

total = total + numbers[i]
END FOR
PRINT(total)

END AddArray

9

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Minimum value in array

FUNCTION FindMinimumValue
numbers = [4, 8, 23, 52, 3, 27, 86]
min = numbers[0]
minIndex = 0
FOR i = 1 TO numbers.length – 1

IF numbers[i] < min THEN
min = numbers[i]
minIndex = i

END IF
END FOR
PRINT(“The minimum value is”, min)
PRINT(“The minimum value is at position”, minIndex)

END AddArray

Maximum value in array

FUNCTION FindMaximumValue
numbers = [4, 8, 23, 52, 3, 27, 86]
max = numbers[0]
maxIndex = 0
FOR i = 1 TO numbers.length – 1

IF numbers[i] > max THEN
max = numbers[i]
maxIndex = i

END IF
END FOR
PRINT(“The maximum value is”, max)
PRINT(“The maximum value is at position”, maxIndex)

END AddArray

10

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

File processing

FUNCTION ReadFile
myfile = OPEN_READ(“data.txt”)
lines = []
WHILE NOT myfile.EOF

line = myfile.READLINE()
lines.append(line)

END WHILE
CLOSE(myfile)

END ReadFile

FUNCTION WriteFile
myfile = OPEN_WRITE(“ouputfile.txt”)
lines = [“Twinkle Twinkle Little Star”, “Baa Baa Black Sheep”, “Hickory Dickory Dock”]
FOR i = 0 TO (lines.length – 1)

myfile.WRITELINE(lines[i])
END FOR
CLOSE(myfile)

END WriteFile

FUNCTION AppendFile
myfile = OPEN_APPEND(“names_file.txt”)
names = [“James Smith”, “Aaron Jones”, “Sally Gonzales”]
FOR i = 0 TO (names.length – 1)

myfile.WRITELINE(names[i])
END FOR
CLOSE(myfile)

END WriteFile

11

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Search algorithms

Linear search

The linear search will go through an array and check each element for the target until it is found. If it
does not find the target, it will move through the array until the end.

The algorithm below will return the index of the target element if it is found. If the target element is
not found it will return -1.

FUNCTION LinearSearch(searchArray, target)
index = 0
position = -1
WHILE index < searchArray.length AND position == -1

IF searchArray[index] = target THEN
position = index

END IF
index = index + 1

END WHILE
RETURN position

END LinearSearch

Binary search

The binary search works by comparing the middle element of an array to the target element. If a
match is not found, then the element array is split into two. If the element is less than the middle
element, then the sub-array continues the search until the numbers can be split.

Note: The binary search requires the array to be sorted to work properly.

FUNCTION BinarySearch(searchArray, target)
position = -1
lowerBound = 0
upperBound = searchArray.length – 1
WHILE lowerbound <= upperBound AND position == -1

midpoint = (lowerBound + upperBound) / 2
IF searchArray[midpoint] < target THEN

lowerBound = midpoint + 1
ELSE IF searchArray[midpoint] > target THEN

upperBound = midpoint – 1
ELSE

position = midpoint
END IF

END WHILE
RETURN position

END BinarySearch

Sort algorithms

Bubble sort

12

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

FUNCTION BubbleSort(arrayToSort)
last = arrayToSort.length - 1
swapped = TRUE
WHILE swapped

swapped = FALSE
i = 0
WHILE i < last

IF arrayToSort [i] > arrayToSort [i + 1] THEN
temp = arrayToSort [i]
arrayToSort [i] = arrayToSort [i + 1]
arrayToSort [i + 1] = temp
swapped = TRUE

END IF
i = i + 1

END WHILE
last = last - 1

END WHILE
RETURN arrayToSort

END BubbleSort

Insertion sort

FUNCTION InsertionSort(arrayToSort)
position = 0
WHILE position < arrayToSort.length

currentValue = arrayToSort[position]
sortedPosition = position - 1
WHILE sorted_position >= 0 and arrayToSort[sortedPosition] > currentValue

arrayToSort[sortedPosition + 1] = arrayToSort[sortedPosition]
sortedPosition = sortedPosition - 1

END WHILE
arrayToSort[sortedPosition + 1] = currentValue
position = position + 1

END WHILE
return arrayToSort

END InsertionSort

Selection sort
FUNCTION SelectionSort(arrayToSort)

unsortedIndex = arrayToSort.length – 1
WHILE unsortedIndex > 0

i = 0
max = arrayToSort[i]
maxIndex = i
WHILE i <= unsortedIndex

i = i + 1

13

Additional syllabus support document | Computer Science| Year 11&12 ATAR

IF arrayToSort[i] > max THEN
max = arrayToSort[i]
maxIndex = i

END IF
END WHILE
temp = arrayToSort[maxIndex]
arrayToSort[maxIndex] = arrayToSort[unsortedIndex]
arrayToSort[unsortedIndex] = temp
unsortedIndex = unsortedIndex - 1

END WHILE
RETURN arrayToSort

END SelectionSort

14

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Network communications

Key protocols associated with layers in models
The following table shows some of the key protocols associated with the different layers of the
Department of Defence Transfer Communication Protocol/Internet Protocol (DoD TCP/IP) model.

DoD TCP/IP model OSI model Key protocols

Application Application SMTP, FTP, HTTP, HTTPS, DHCP, DNS, PING

Presentation

Session

Transport Transport TCP & UDP

Internet Network IPV6, IPv4, ARP

Network Data Link Ethernet (802.3), Wi-Fi (802.11)

Physical

15

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Network diagram conventions (CISCO)

Router

Wired

Wireless

Switch

Wireless access point

Firewalls

16

Additional syllabus support booklet | Computer Science| ATAR course | Year 11&12

Network diagram example:

17

Additional syllabus support booklet | Computer Science| ATAR course | Year 11&12

Cyber security

Types of malware
• Ransomware
• Viruses
• Rootkits
• Spyware
• Backdoors
• Phishing

Common methods of encryption

Early methods and weaknesses

• Substitution cipher swaps out characters. Assuming 26 alphabet characters, it is easily broken
using character frequency.

• Vigenère cipher uses a repeated key combing plain text with the key. Easily broken if we know
the length of the key and use the character frequency method similar to the substitution cipher.

• Mechanical encryption such as the World War II (WW2) Enigma machine. Each mechanical
method had its own weakness. The Enigma’s weakness was it never encrypted a letter as itself.

• Data Encryption Standard (DES) was the first digital encryption standard used a key size of 56
bits. That is small compared to today’s standards and is quickly cracked with fast processing
speeds available today.

• Advanced Encryption Standard (AES) replaced DES as the commonly used method of
encryption. It uses 128, 192 and 256 bits and is yet to be cracked.

DES and AES use symmetric keys, which means the key used to encrypt is the same key to decrypt.
This is a problem if you need to securely communicate with someone who does not have the private
key. RSA (Rivest–Shamir–Adleman) encryption solves the problem with asymmetric encryption –
data is encoded with a public key that is then decrypted using a private key. It is very slow compared
to AES, so it’s often used to securely communicate the private AES key. RSA uses 2048–4096 key
sizes and works using a key produced by an algorithm using two prime numbers.

Current best practice

• Secure your private key – a stolen key means your data is no longer secure. Ensure only those
who need the key are able to access it.

• Back up your key – a lost key means lost data as it will be permanently encrypted.
• Use longer length keys to ensure brute force cracking is harder.
• Use audit logs to check if keys have been accessed by unauthorised users.
• Best practice is that users should encrypt any messages, critical or sensitive files they send. This

extends to the encryption of storage devices in case they fall into the wrong hands.
• Best practice is based upon the guidelines from NIST: (National Institute of Standards and

Technology) https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines.

https://csrc.nist.gov/Projects/cryptographic-standards-and-guidelines

18

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Data management

Entity relationship diagrams
An Entity relationship (ER) diagram provides a graphical representation of the relationships between
the entities in a database. In this course, ER diagrams are to be drawn using crow’s foot notation as
shown below.

Entity and attributes Relationships between entities

One to one

One to many

Many to many

ER diagram example

19

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Data dictionaries
Data dictionaries provide metadata that describes the attributes of data to be stored in a database.

Fields include:

Element Name Data Type Size Description Constraints

Data dictionary example

Element
Name

Data Type Size Description Constraints

StudentNum Integer Unique identifier for student Must be unique and not null

GivenName Text 20 Student’s given name Not null

FamilyName Text 20 Student’s family name Not null

NOTE: Description should include a brief description of the data being stored, the format of the data
and the default value if applicable.

Normalisation
Normalisation is the process of identifying and eliminating data anomalies and redundancies,
thereby improving data integrity and efficiency for storage in a relational database. This process is
designed to remove repeated data and improve database design.

Data Anomalies

Consider the data in the table below. This unnormalised data can cause problems when data is
updated, added or deleted.

Student
Number

Given
Name

Family
Name

Email Course Course Name

10010504 David Rossi drossi@student.edu.au MATH1001 Mathematics 1A

10010504 David Rossi drossi@student.edu.au COMP1001 Computing 1A

10010504 David Rossi drossi@student.edu.au MATH1002 Mathematics 1B

24352494 Debbie Tainton dtainton@student.edu.au MATH1002 Mathematics 1B

24352494 Alison Roach aroach@student.edu.au MATH2001 Mathematics 2B

mailto:dunaipon@student.edu.au
mailto:dunaipon@student.edu.au
mailto:dunaipon@student.edu.au
mailto:dtainton@student.edu.au
mailto:aroach@student.edu.au

20

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Update anomaly

An update anomaly occurs when you try to update data that is stored in multiple locations. If all
records are not updated, then data could become inconsistent and/or inaccurate. For example, if
David Rossi updates his email address, then all three occurrences need to be updated

Delete anomaly

A delete anomaly occurs when by deleting one piece of data you delete the only instance of another
piece of data. For example, if Alison Roach was removed from the database, then we would also lose
all the information about the subject Mathematics 2B.

Insert anomaly

An insert anomaly occurs when data cannot be added because only part of the data is available.
For example, if a new subject is added, but no student allocated, then we would be unable to add
the subject as we would not have all the necessary information to create a new record.

Normalisation to 3NF (3rd Normal Form)

Steps to normalisation of data:
1. ensure data is in the form of a relation
2. convert data to 1NF (1st Normal Form)
3. convert data to 2NF (2nd Normal Form)
4. convert data to 3NF (3rd Normal Form).

Converting data to a relation

For data to be in the form of a relation:
1. it must have no repeated attributes
2. all cells must be atomic (that is, they must only contain a single piece of data).

Repeated Fields
The following table is not in the form of a relation as it has repeating fields – the Course field is
repeated multiple times.

Student
Number

Given name Family name Course 1 Course 2 Course 3

10010504 David Rossi MATH1001 COMP1001 MATH1002

24352494 Debbie Tainton MATH1001

Non-atomic Field
The following table is not in the form of a relation as one of the fields is not atomic – the Course field
for David Rossi has information about three different courses.

Student
Number

Given name Family name Course

10010504 David Rossi MATH1001, COMP1001, MATH1002

24352494 Debbie Tainton MATH1001

21

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Relation
The following table is in the form of a relation as all fields are atomic and there are no repeating
fields. This data is not normalised and would not make a good database structure, but we can now
start the process of normalisation.

Relation example

Student
Number

Given
name

Family
name

Email Course Course Name

10010504 David Rossi drossi@student.edu.au MATH1001 Mathematics 1A

10010504 David Rossi drossi@student.edu.au COMP1001 Computing 1A

10010504 David Rossi drossi@student.edu.au MATH1002 Mathematics 1B

24352494 Debbie Tainton dtainton@student.edu.au MATH1002 Mathematics 1B

24352494 Alison Roach aroach@student.edu.au MATH2001 Mathematics 2B

Process of normalisation:

1NF (1st Normal Form)

To be in 1st Normal Form, we must:
1. ensure that all fields are atomic
2. remove all repeating attributes.

Each relation that is formed will have a primary key. Primary keys are indicated with the use of
underlining the attribute. Foreign key (FK) attributes are indicated with the use of FK. The relation
formed from the non-repeating attributes will have a foreign key to the relation formed from the
repeating attributes. The primary key for the relation for the non-repeating fields will now be a
composite key comprising the primary key from the non-repeating relation and the repeating
relation.

2NF (2nd Normal Form)

To be in 2nd Normal Form, we must:
1. be in 1NF
2. have no partial dependencies.

Partial dependencies occur when a non-key attribute is only dependent on part of the composite
key. If a relation does not have a composite key (that is, the primary key is made up of a single
attribute) then it must already be in 2NF.

3NF (3rd Normal Form)

To be in 3rd Normal Form, we must:
1. be in 2NF
2. have no transitive dependencies.

All non-key fields in a relation must be fully functionally dependent on nothing but the primary key.
Transitive dependencies occur when a non-key field is dependent on a field other than the primary key.

mailto:dunaipon@student.edu.au
mailto:dunaipon@student.edu.au
mailto:dunaipon@student.edu.au
mailto:dtainton@student.edu.au
mailto:aroach@student.edu.au

22

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Normalisation example

Relation

Student
Number

Given
name

Family
name

Course Course Name Result Result Description

10010504 David Rossi MATH1001 Mathematics 1A A Highly Skilled

10010504 David Rossi MATH1002 Mathematics 1B B Skilled

10010504 David Rossi COMP1001 Computing 1A A Highly Skilled

10020423 James Stanton MATH1001 Mathematics 1A C Competent

10020423 James Stanton COMP1001 Computing 1A C Competent

23521461 Debbie Tainton MATH1001 Mathematics 1A B Skilled

23521461 Debbie Tainton MATH1002 Mathematics 1B A Excellent

23521461 Debbie Tainton COMP1001 Computing 1A A Excellent

24352494 Alison Roach MATH1002 Mathematics 1B C Competent

24352494 Alison Roach COMP1001 Computing 1A A Excellent

This can be written using relational notation:

Student Results(Student Number, Given Name, Family Name, Course, Course Name, Results, Result
Description)

Convert to 1NF

Firstly, check that all attributes are atomic. Then, remove all repeating attributes and place them in
another relation.

Student
Number

Given
name

Family
name

 Student
Number

Course Course Name Result
Result
Description

10010504 David Rossi

10010504 MATH1001 Mathematics 1A A Highly Skilled

10020423 James Stanton

10010504 MATH1002 Mathematics 1B B Skilled

23521461 Debbie Tainton

10010504 COMP1001 Computing 1A A Highly Skilled

24352494 Alison Roach

10020423 MATH1001 Mathematics 1A C Competent

10020423 COMP1001 Computing 1A C Competent

23521461 MATH1001 Mathematics 1A B Skilled

23521461 MATH1002 Mathematics 1B A Excellent

23521461 COMP1001 Computing 1A A Excellent

24352494 MATH1002 Mathematics 1B C Competent

24352494 COMP1001 Computing 1A A Excellent

23

Additional syllabus support document | Computer Science| Year 11&12 ATAR

This can be written using relational notation:

Student(Student Number, Given Name, Family Name)

StudentCourse(Student Number FK, Course FK, Course Name, Result, Result Description)

Convert to 2NF

Check for and remove any partial dependencies. Partial dependencies will only occur in a relation
that has a composite key, so Student is already in 2NF.

Student
Number

Given
name

Family
name

 Course Course Name Student
Number

Course Result
Result
Description

10010504 David Rossi MATH1001 Mathematics 1A 10010504 MATH1001 A
Highly
Skilled

10020423 James Stanton

MATH1002 Mathematics 1B

10010504 MATH1002 B Skilled

23521461 Debbie Tainton COMP1001 Computing 1A 10010504 COMP1001 A
Highly
Skilled

24352494 Alison Roach

10020423 MATH1001 C Competent

10020423 COMP1001 C Competent

23521461 MATH1001 B Skilled

23521461 MATH1002 A Excellent

23521461 COMP1001 A Excellent

24352494 MATH1002 C Competent

24352494 COMP1001 A Excellent

This can be written using relational notation:

Student(Student Number, Given Name, Family Name)

Course(Course, Course Name)

StudentCourse(Student Number FK, Course FK, Result, Result Description)

24

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Convert to 3NF

Finally, check there are no transitive dependencies. In this case, the result description is dependent
on the result, not the course.

Student
Num

Given
name

Family
name

Course Course Name Student
Number

Course Result

10010504 David Rossi

MATH1001 Mathematics 1A

10010504 MATH1001 A

10020423 James Stanton

MATH1002 Mathematics 1B

10010504 MATH1002 B

23521461 Debbie Tainton

COMP1001 Computing 1A

10010504 COMP1001 A

24352494 Alison Roach

10020423 MATH1001 C

10020423 COMP1001 C

23521461 MATH1001 B

Result
Result
Description

23521461 MATH1002 A

A Highly Skilled

23521461 COMP1001 A

B Skilled

24352494 MATH1002 C

C Competent

24352494 COMP1001 A

This can be written using relational notation:

Student(StudentNum, Given Name, LastName)

Course(Course, CourseName)

StudentCourse(StudentNum FK, Course FK, Result FK)

Result(Result, ResultDescription)

25

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Common SQL
Function SQL syntax

Create table CREATE TABLE name (
pk INTEGER PRIMARY KEY,
field1 type NOT NULL,
field2 type NULL, …)

Select all data SELECT * FROM table

Select specific fields SELECT field1, field2, field3
FROM table

Select matching rows SELECT field1, field2
FROM table
WHERE expression

Select data from multiple
tables

SELECT table1.field1, table2.field1
FROM table1, table2
WHERE table1.pk = table2.fk

Use aggregate functions SELECT AVG(field1)
FROM table

Select unique rows SELECT DISTINCT field1
FROM table

Sort rows SELECT field1, field2
FROM table
ORDER BY field2 DESC

Group results SELECT field1, AVG(field2)
FROM table
GROUP BY field1

Filter grouped results SELECT field1, AVG(field2)
FROM table
GROUP BY field1
HAVING expression

Concatenate fields SELECT field1 || field2, field 3
FROM table

Remove table from database DROP TABLE IF EXISTS table

Insert record into table INSERT INTO table (field1, field2)
VALUES (value1, value2)

Delete all records from table DELETE FROM table

Delete specific records from
table

DELETE FROM table
WHERE condition

Change records in a table UPDATE table
SET field1 = value
WHERE expression

26

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Function SQL syntax

Comparison operators = Equal to

<> or != Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Logic operators ALL returns TRUE if all expressions are TRUE.

AND
returns TRUE if both expressions are TRUE, and FALSE if
one of the expressions is FALSE.

ANY returns TRUE if any one of a set of comparisons is TRUE.

BETWEEN returns TRUE if a value is within a range.

EXISTS returns TRUE if a subquery contains any rows.

IN returns TRUE if a value is in a list of values.

LIKE
returns TRUE if a value matches a pattern (use with the
wildcard characters % and _)

NOT
reverses the value of other operators such as NOT EXISTS,
NOT IN, NOT BETWEEN, etc.

OR returns TRUE if either expression is TRUE

Aggregate functions AVG calculate the average value

COUNT count the number of items in a set

MAX find the maximum value

MIN find the minimum value

SUM calculate the sum of values

27

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Appendices
Python is the prescribed programming language for the Computer Science ATAR course and will be
used in ATAR examination questions related to programming.

Control Structure Python Examples
Pseudocode Python

INPUT(num1)
INPUT(num2)
product = num1 * num2
PRINT(product)

#sequence

num1 = int(input("First num: "))

num2 = int(input("Second num: "))

product = num1 * num2

print(product)

speed = 50
IF speed > 50 THEN

PRINT(“You are speeding”)
END IF

#selection - IF

speed = 50

if speed > 50:

 print("You are speeding")

speed = 50
IF speed > 50 THEN

PRINT(“You are speeding”)
ELSE

PRINT(‘You are not speeding”)
END IF

#selection - IF ELSE

speed = 50

if speed > 50:

 print("You are speeding")

else:

 print("You are not speeding")

Method 1 – IF…ELSE IF…ELSE
speed = 50
IF speed < 20 THEN

PRINT(“You are going too slow”)
ELSE IF speed > 50 THEN

PRINT(“You are speeding”)
ELSE

PRINT(“You are not speeding”)
END IF

#selection - IF ELIF ELSE

speed = 50

if speed < 20:

 print("You are going too slow")

elif speed > 50:

 print("You are speeding")

else:

 print("You are not speeding")

28

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

Pseudocode Python

Method 2 – CASE statement
colour = ‘red’
CASE colour OF

’red’: PRINT(“Stop”)
‘yellow’: PRINT (“Slow down”)
‘green’: PRINT(“Go”)
OTHER: PRINT(“Incorrect colour”)

END CASE

#selection CASE (match in Python)

colour = "red"

match colour:

 case "red":

 print("Stop")

 case "yellow":

 print("Slow down")

 case "green":

 print("Go")

 case other:

 print("Incorrect colour")

num = 0
WHILE num < 10

PRINT(“The number is “ + num)
num = num + 1

END WHILE

#Test first loop (while)

num = 0

while num < 10:

 print("The number is {num}")

 num = num + 1

REPEAT
INPUT(Age)

UNTIL (Age >= 6) AND (Age <= 17)
PRINT (Age)

#Test last loop (repeat until)

#No structure exists to natively
implement this in Python, but this
is functionally identical

age = input("Age: ")

while age < 6 and age > 17:

 age = input("Age: ")

print(age)

FOR num = 1 TO 10
PRINT(“The number is “ + num)

END FOR

FOR num = 10 TO 1 STEP –1

 PRINT(num)

END FOR

PRINT("Blast off!”)

FOR num = 1 TO 100 STEP 10
PRINT(“The number is “ + num)

END FOR

#Fixed loops - FOR

for num in range(1,11):

 print("The number is: {num}")

for num in range(10,0, -1):

 print(num)

print("Blast off!")

for num in range(1,100,10):

 print("The number is {num}")

29

Additional syllabus support document | Computer Science| Year 11&12 ATAR

Object Oriented Python Examples

class Animal:

 name = ""

 hunger = 5

 food_list = []

 #Functions named "__init__" act as constructors in Python

 def __init__(self, new_name):

 name = new_name

 def eat(self, food):

 result = ""

 if food in self.food_list:

 result = "Not hungry"

 if hunger > 0:

 self.hunger = self.hunger - 1

 result = "That was yummy"

 else:

 result = "I don't like that food"

 return result

 def is_hungry(self):

 return self.hunger > 0

horse = Animal("Silver") #Creates a horse with the name "Silver"

horse.food_list.append("grass") #Will add grass to the food_list

horse.eat("potato") #Will return “I don’t like that food”

#To indicate inheritance in Python, the class will receive the parent as a
parameter

class Dog(Animal):

 has_fur = True

 legs = 4

 food_list = ["meat", "bones"]

 def bark(self):

 return f"{self.name} is barking"

 def number_of_legs(self):

 return self.legs

class Fish(Animal):

30

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

 has_fins = True

 food_list = ["algae", "plankton"]

 def swim(self):

 return f"{self.name} is swimming"

fido = Dog("Fido")

print(fido.number_of_legs())

goldie = Fish("Goldie")

print(goldie.has_fins)

Array Examples
#Load an array
def LoadArray():
 name = ""
 i = 0
 names = []
 name = input("Enter a name: ")
 while name != "":
 names.append(name)
 i = i + 1
 name = input("Enter a name: ")

 print(f"There were {i} names entered.")

#Print contents of an array
def PrintArray():
 names = ["Peter", "Jane", "Hugo", "Kai", "Sally", "Arman"]
 for i in range(len(names)):
 print(names[i])

#Add contents of an array
def AddArray():
 numbers = [4, 8, 23, 52, 3, 27, 86]
 total = 0

 for i in range(len(numbers)):
 total = total + numbers[i]

 print(total)

#Minimum value in array
def FindMinimumValue():
 numbers = [4, 8, 23, 52, 3, 27, 86]
 min = numbers[0]
 minIndex = 0

 for i in range(len(numbers)):
 if numbers[i] < min:
 min = numbers[i]
 minIndex = i
 print(f"The minimum value is {min}")
 print(f"The minimum value is at position {minIndex}")

31

Additional syllabus support document | Computer Science| Year 11&12 ATAR

#Maximum value in array
def FindMaximumValue():
 numbers = [4, 8, 23, 52, 3, 27, 86]
 max = numbers[0]
 maxIndex = 0
 for i in range(len(numbers)):
 if numbers[i] > max:
 max = numbers[i]
 maxIndex = i

 print(f"The maximum value is {max}")
 print(f"The maximum value is at position {maxIndex}")

File Processing
#Note that Python has several methods to open and access files
#These examples have been created to most closely match the provided
pseudocode

def ReadFile():
 myfile = open("data.txt")
 lines = []
 line = myfile.readline()

 while line != "":
 lines.append(line.strip())
 line = myfile.readline()

 myfile.close()

def WriteFile():
 newline = "\n"
 myfile = open("outputfile.txt", "w")

 lines = ["Twinkle Twinkle Little Star", "Baa Baa Black Sheep", "Hickory
Dickory Dock"]

 for i in range(len(lines)):
 myfile.write(lines[i] + newline)

 myfile.close()

def AppendFile():
 newline = "\n"
 myfile = open("names_file.txt", "a")

 names = ["James Smith", "Aaron Jones", "Sally Gonzales"]

 for i in range(len(names)):
 myfile.write(names[i] + newline)

 myfile.close()

Search Algorithms
def LinearSearch(searchArray, target):
 index = 0
 position = -1
 while index < len(searchArray) and position == -1:
 if searchArray[index] == target:

32

Additional syllabus support booklet | Computer Science| Year 11&12 ATAR

 position = index
 index = index + 1
 return position

def BinarySearch(searchArray, target):
 position = -1
 lowerBound = 0
 upperBound = len(searchArray) - 1
 while lowerBound <= upperBound and position == -1:
 midpoint = (lowerBound + upperBound) // 2
 if searchArray[midpoint] < target:
 lowerBound = midpoint + 1
 elif searchArray[midpoint] > target:
 upperBound = midpoint - 1
 else:
 position = midpoint
 return position

Sort Algorithms

def BubbleSort(arrayToSort):
 last = len(arrayToSort) - 1
 swapped = True
 while swapped:
 swapped = False
 i = 0
 while i < last:
 if arrayToSort[i] > arrayToSort[i + 1]:
 temp = arrayToSort[i]
 arrayToSort[i] = arrayToSort[i + 1]
 arrayToSort[i + 1] = temp
 swapped = True
 i = i + 1
 last = last - 1
 return(arrayToSort)

def BubbleSort(arrayToSort):
 last = len(arrayToSort) - 1
 swapped = True
 while swapped:
 swapped = False
 i = 0
 while i < last:
 if arrayToSort[i] > arrayToSort[i + 1]:
 temp = arrayToSort[i]
 arrayToSort[i] = arrayToSort[i + 1]
 arrayToSort[i + 1] = temp
 swapped = True
 i = i + 1
 last = last - 1
 return(arrayToSort)

def InsertionSort(arrayToSort):
 position = 0
 while position < len(arrayToSort):

33

Additional syllabus support document | Computer Science| Year 11&12 ATAR

 currentValue = arrayToSort[position]
 sortedPosition = position - 1
 while sortedPosition >= 0 and arrayToSort[sortedPosition] >
currentValue:
 arrayToSort[sortedPosition + 1] = arrayToSort[sortedPosition]
 sortedPosition = sortedPosition - 1
 arrayToSort[sortedPosition + 1] = currentValue
 position = position + 1
 return arrayToSort

def SelectionSort(arrayToSort):
 unsortedIndex = len(arrayToSort) - 1
 while unsortedIndex > 0:
 i = 0
 max = arrayToSort[i]
 maxIndex = i
 while i < unsortedIndex:
 i = i + 1
 if arrayToSort[i] > max:
 max = arrayToSort[i]
 maxIndex = i

 temp = arrayToSort[maxIndex]
 arrayToSort[maxIndex] = arrayToSort[unsortedIndex]
 arrayToSort[unsortedIndex] = temp
 unsortedIndex = unsortedIndex - 1
 return arrayToSort

	Purpose
	Programming
	Software licensing
	Conventions for writing pseudocode
	Common commands for writing pseudocode

	Programming control structures
	Modularisation
	Parameters

	Object-oriented programming
	Creating a new class
	Instantiating and using an object:
	Inheritance
	Common algorithms
	Arrays
	Load an array
	Print contents of an array
	Add contents of an array
	Minimum value in array
	Maximum value in array

	File processing
	Search algorithms
	Linear search
	Binary search

	Sort algorithms
	Bubble sort
	Insertion sort

	Network communications
	Key protocols associated with layers in models
	Network diagram conventions (CISCO)
	Network diagram example:

	Cyber security
	Types of malware
	Common methods of encryption
	Early methods and weaknesses
	Current best practice

	Data management
	Entity relationship diagrams
	ER diagram example

	Data dictionaries
	Data dictionary example

	Normalisation
	Data Anomalies
	Update anomaly
	Delete anomaly
	Insert anomaly

	Normalisation to 3NF (3rd Normal Form)
	Converting data to a relation

	Relation example
	Process of normalisation:
	1NF (1st Normal Form)
	2NF (2nd Normal Form)
	3NF (3rd Normal Form)

	Normalisation example
	Relation
	Convert to 1NF
	Convert to 2NF
	Convert to 3NF

	Common SQL

	Appendices
	Control Structure Python Examples
	Object Oriented Python Examples

