

Government of Western Australia School Curriculum and Standards Authority

# CHEMISTRY

# **ATAR Course Examination 2016**

# **Marking Key**

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

# Section One: Multiple-choice

25% (25 Marks)

| Question No. | Answer |
|--------------|--------|
| 1            | С      |
| 2            | а      |
| 3            | b      |
| 4            | b      |
| 5            | b      |
| 6            | d      |
| 7            | b      |
| 8            | а      |
| 9            | а      |
| 10           | b      |
| 11           | d      |
| 12           | d      |
| 13           | d      |
| 14           | а      |
| 15           | С      |
| 16           | С      |
| 17           | а      |
| 18           | b      |
| 19           | d      |
| 20           | С      |
| 21           | d      |
| 22           | а      |
| 23           | b      |
| 24           | С      |
| 25           | а      |

#### Section Two: Short answer

#### **Question 26**

Galvanic cells and electrolytic cells are often constructed in the laboratory.

(a) List **four** characteristics or components that these two types of cells have in common with each other. (4 marks)

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Answers may include, but are not limited to the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| <ul> <li>both contain a cathode and an anode (whether on one line or two only one mark)</li> <li>electrons flow through an external circuit (from anode to cathode)</li> <li>an electrolyte/liquid/solution is needed</li> <li>electrons flow from the anode to the cathode</li> <li>both are redox reactions</li> <li>oxidation occurs at the anode and reduction occurs at the cathode (only need to mention one to get the mark)</li> <li>anions flow towards anode and cations flow towards cathode.</li> <li>both require electrodes</li> <li>both operate on a potential difference</li> </ul> | 1–4   |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4     |

(b) List **two** characteristics or components that can be used to distinguish between the two types of cells. State the characteristic or component for each cell. (2 marks)

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| One mark for each difference. Maximum two marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Answers may include, but are not limited to the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L     |
| <ul> <li>there is only one cell in an electrolytic cell while two half cells (separated) for a galvanic cell</li> <li>the galvanic cell has a salt bridge while the electrolytic cell does not have a salt bridge</li> <li>the galvanic cell has a spontaneous reaction while an electrolytic cell requires an emf to be applied to force a reaction (non-spontaneous)</li> <li>the electrolytic cell has an external emf applied (battery/power source) while the galvanic cell produces the emf.</li> <li>galvanic cell is spontaneous (+ emf) while electrolytic cell reaction is non-spontaneous (- emf)</li> <li>galvanic cell the anode is negative and cathode is positive while in an electrolytic cell, the anode is positive and the cathode is negative</li> <li>in a galvanic cell, chemical energy is converted to electrical energy while in an electrolytic cell, electrical energy is converted to chemical</li> </ul> | 1–2   |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2     |

35% (83 Marks)

(6 marks)

(i)

(a)

Write observations for the changes occurring when the substances below are mixed. In your answers include the appearance of the reactants and any product(s) that form.

methanol, pentanoic acid and sulfuric acid

| Description                                                  | Marks |
|--------------------------------------------------------------|-------|
| Description of initial reactants being combined              | 4     |
| <ul> <li>two (colourless) solutions (liquids) mix</li> </ul> | I     |
| Identification of main product observation/s                 | 1     |
| <ul> <li>fruity smell produced</li> </ul>                    | I     |

### (ii) powdered magnesium carbonate and excess methanoic acid (2 marks)

| Description                                                        | Marks |
|--------------------------------------------------------------------|-------|
| Observation of reactants                                           | 1     |
| <ul> <li>white solid added to colourless liquid.</li> </ul>        | I     |
| Observation of products (at least one of each pair required for    |       |
| the mark)                                                          |       |
| - effervescence or fizzing or bubbling <b>or</b>                   |       |
| - colourless, odourless gas                                        | 1     |
|                                                                    |       |
| - colourless solution <b>or</b>                                    |       |
| - white solid dissolves                                            |       |
| Total                                                              | 2     |
| Note:                                                              |       |
| Acceptable - no observable change (no visible reaction) or similar |       |
| Not acceptable - Acronyms eg NOC, NVR                              |       |

## (iii) acidified potassium permanganate solution and excess propan-2-ol (2 marks)

| Description                                                                                                                                | Marks |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul> <li>Description of initial reactants being combined.</li> <li>a purple solution is mixed with a colourless solution/liquid</li> </ul> | 1     |
| Identification of main product observation/s - purple colour fades / the solution decolourises or turns pale pink / colourless             |       |
| Total                                                                                                                                      | 2     |

(b) Name the organic product and write the equation for the reaction when pentanal is added to a solution containing acidified sodium dichromate. (3 marks)

| Description                                                                           | Marks |
|---------------------------------------------------------------------------------------|-------|
| Pentanoic acid                                                                        | 1     |
|                                                                                       |       |
| $Cr_2O_7^{2-} + 3 C_5H_{10}O + 8 H^+ \rightarrow 2 Cr^{3+} + 3 C_5H_{10}O_2 + 4 H_2O$ | 2     |
| One error or omission                                                                 | 1     |
| Total                                                                                 | 3     |
| Note:                                                                                 |       |
| If name incorrect, but equation is correct for pentanoic acid – 2 marks               |       |
| If reactant used is pentanol but balanced correctly for the alcohol – 1 mark          |       |

MARKING KEY

(2 marks)

2

Total

(a) The condensed structure of a petroleum diesel is given here.

$$CH_3 - CH_2 - (CH_2)_{12} - CH_2 - CH_3$$

Draw the condensed structure of a biodiesel containing the same number of carbon atoms in the chain. (3 marks)

| Description                                                          | Marks |
|----------------------------------------------------------------------|-------|
| Structure contain an methyl, ethyl, or propyl ester functional group | 1     |
|                                                                      |       |
| Structural diagram                                                   |       |
| (methyl) - 16 or 17 carbon atoms in total                            | 2     |
| (ethyl) - 16 or 18 carbon atoms in total                             | 2     |
| (propyl) - 16 or 19 carbon atoms in total                            |       |
| Has one minor error or omission                                      | 1     |
| Example:                                                             |       |
| $CH_3 - CH_2 - (CH_2)_{12} - CH_2 - C = O$                           |       |
| СН                                                                   |       |
|                                                                      |       |
| Total                                                                | 3     |

(b) Biodiesel can be synthesised using a base-catalysed method or a lipase-catalysed method. Outline briefly an argument to justify the use of a lipase-catalysed method rather than a base-catalysed method to produce biodiesel. (3 marks)

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| One mark for each point of argument; up to a maximum of three marks.<br>The point made must contrast between the two methods of catalysis<br>clearly identifying to which method/s is being referred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Answers may include, but are not limited to the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| <ul> <li>The lipase-catalysed method:</li> <li>produces a higher yield as it does not produce the soaps that are formed using a base-catalysed method</li> <li>produces a higher purity biodiesel than when the base-catalysed method is used</li> <li>is safer as it does not: <ul> <li>require the use of caustic materials such as sodium hydroxide used in the base-catalysed method</li> <li>produce the high temperatures, with its accompanying risks, which a strong base catalyst produces</li> </ul> </li> <li>has less negative environmental impact as lipase catalysts are: <ul> <li>biodegradable while strong bases are not</li> <li>not caustic nor affect acidity of the environment as strong bases do</li> </ul> </li> <li>contributes to lower overall costs because: <ul> <li>they are less subsequent processing problems than those caused by the presence of a strong base</li> <li>does not add to the expense in the purifying of glycerol as is in the case when in the presence of a strong base</li> <li>it makes for easier separation of biodiesel from the by-product glycerol.</li> </ul> </li> </ul> | 1–3   |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3     |

## **Question 29**

## (9 marks)

Select **one** addition polymer you have studied and use it to complete parts (a) to (c).

(a) Draw and name the structure of the monomer used to produce this polymer. (2 marks)

| Description                                                |       | Marks |
|------------------------------------------------------------|-------|-------|
| Structure contains a double bond                           |       | 1     |
| Name matches structure drawn                               |       | 1     |
| Answers may include, but are not limited to the following: |       |       |
| • ethene                                                   |       |       |
| • propene                                                  |       |       |
| chloroethene                                               |       |       |
| tetrafluoroethene                                          |       |       |
| • styrene.                                                 |       |       |
|                                                            | Total | 2     |

## (b) Draw and name the polymer, including at least **three** repeating units. (2 marks)

| Description                                                  | Marks |
|--------------------------------------------------------------|-------|
| Structure contains at least three repeating units of monomer | 1     |
| Name matches structure drawn                                 | 1     |
| Answers may include, but are not limited to the following:   |       |
| polyethylene/polyethene                                      |       |
| polypropylene                                                |       |
| <ul> <li>poly vinyl chloride (PVC accepted)</li> </ul>       |       |
| <ul> <li>polytetrafluoroethene/Teflon</li> </ul>             |       |
| polystyrene.                                                 |       |
| Total                                                        | 2     |

## (c) State **one** use for this polymer, making reference to its relevant property/ies. (2 marks)

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| One mark for use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1     |
| One mark for <b>relevent</b> property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1     |
| Answers may include, but are not limited to the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| <ul> <li>Polyethylene/polyethene         <ul> <li>packaging, bottles, cling wrap, insulation (strength, flexibility, transparency, heat resistance)</li> </ul> </li> <li>Polypropylene         <ul> <li>packaging, textiles, laboratory containers (strength, flexibility)</li> </ul> </li> <li>Poly vinyl chloride         <ul> <li>construction, piping, flooring (strength)</li> </ul> </li> <li>Polytetrafluoroethene/Teflon         <ul> <li>non-stick coatings for cooking, clothing (heat resistance, low friction)</li> </ul> </li> <li>Polystyrene         <ul> <li>containers, disposable cutlery and dinnerware, packing material (flexibility, heat resistance).</li> </ul> </li> </ul> |       |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2     |
| <b>Note:</b> If the property is not relevant to the use then a maximum of one mark may be allocated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

(d) Draw the **two** monomers from which Kevlar is derived.

(2 marks)



(e) To what secondary structure of proteins does this refer?

(1 mark)

| Description      | Marks |
|------------------|-------|
| ß-pleated sheets | 1     |
| Total            | 1     |

## **Question 30**

# MARKING KEY

## (5 marks)

(a) Use equations to show how ethyl ethanoate can be produced from ethene through the successive processes of hydrolysis and esterification. (4 marks)

| Description                                                            | Marks |
|------------------------------------------------------------------------|-------|
| Step 1: Hydrolysis of ethene to ethanol                                |       |
| $CH_2=CH_2(g) + H_2O(g) \Rightarrow CH_3CH_2OH(g)$                     | 2     |
| One error or omission                                                  | 1     |
|                                                                        |       |
| Step 2: Esterification of ethanol to ethyl ethanoate                   |       |
| $CH_3COOH(g) + CH_3CH_2OH(g) \Rightarrow CH_3COOCH_2CH_3(g) + H_2O(g)$ | 2     |
| One error or omission                                                  | 1     |
| Total                                                                  | 4     |

(b) Write the overall equation for the process of synthesising ethyl ethanoate from ethene. (1 mark)

| Description                                                 | Marks |
|-------------------------------------------------------------|-------|
| $CH_2=CH_2(g) + CH_3COOH(g) \Rightarrow CH_3COOCH_2CH_3(g)$ | 1     |
| Total                                                       | 1     |

## **Question 31**

## (6 marks)

(a) Select **one** basic, **one** acidic and **one** neutral salt from the list below to complete the table. (3 marks)

| Description                                                                                                                           | Marks |
|---------------------------------------------------------------------------------------------------------------------------------------|-------|
| Acidic salt: NH <sub>4</sub> Cl                                                                                                       | 1     |
| Neutral salt: NaNO <sub>3</sub> , or KCł                                                                                              | 1     |
| Any one of the following basic salts:KCN, Mg <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> , KHCO <sub>3</sub> , NaCH <sub>3</sub> COO |       |
| Total                                                                                                                                 | 3     |

(b) Use the Brønsted-Lowry model to explain why the pH of ammonia solution is greater than 7.0 at 25 °C. Incorporate at least **one** appropriate equation in your answer.

(3 marks)

| Description                                                                  | Marks |
|------------------------------------------------------------------------------|-------|
| Refers to the Brønsted-Lowry model specific to the equation:                 |       |
| Water acts as an acid donating a proton to ammonia and ammonia acts          |       |
| as a base accepting a proton                                                 | 1     |
| or                                                                           |       |
| Correctly labelling conjugate acid and base                                  |       |
| $NH_3(g) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$              | 1     |
| Recognises that the concentration of the OH <sup>-</sup> is greater than the | 1     |
| concentration of the H <sup>+</sup> , therefore basic                        | I     |
| Total                                                                        | 3     |

## (6 marks)

(a) A buffer of carbonic acid  $(H_2CO_3)/hydrogencarbonate (HCO_3<sup>-</sup>)$  is present in blood plasma to maintain a pH between 7.35 and 7.45. Write an equation to show the relevant species present in a carbonic acid/hydrogencarbonate buffer solution. (2 marks)

| Description                                                                      | Marks |
|----------------------------------------------------------------------------------|-------|
| $H_2CO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$ (or reverse) | 2     |
| One error or omission                                                            | 1     |
| Tota                                                                             | al 2  |

(b) Explain why 300.0 mL of 1.00 mol L<sup>-1</sup> carbonic acid/hydrogencarbonate buffer does **not** change in pH significantly when 3 drops of 1.00 mol L<sup>-1</sup> HCl are added to it, yet when 3 drops of 1.00 mol L<sup>-1</sup> HCl are added to 300.0 mL of distilled water there is a significant change in pH? (4 marks)

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Addition of HCl increases the concentration of $H_3O^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1     |
| In the buffer there is sufficient $HCO_3^-$ (or species appropriate to the student's equation above) to react and reduce the amount of added $H_3O^+$<br>or<br>The additional $H_3O^+$ reacts with the $HCO_3^-$ (or species appropriate to the student's equation above) and the equilibrium shifts to the left<br>or<br>The rate of the reverse reaction increases due to the additional $H_3O^+$ reacting with $HCO_3^-$ more than the forward reaction resulting in a reduction<br>in the amount of $H_1O^+$ present when equilibrium is re-established | 1     |
| As the concentration of $H_3O^+$ is reduced to close to before the addition of $HC\ell$ , there is a minimal change in pH                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
| (While an equilibrium system, water cannot act as a buffer system because) in water there is insufficient $OH^{-}$ to react with added $H_{3}O^{+}$ so all of the added $H_{3}O^{+}$ contributes to the significant change in pH                                                                                                                                                                                                                                                                                                                            | 1     |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4     |
| Note:<br>It is not adequate to simply state that water is not a buffer to earn the mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |

# MARKING KEY

# **Question 33**

# (5 marks)

(a) Write a balanced chemical equation for this reaction, showing all state symbols.

(2 marks)

| Description                                                                             |       | Marks |
|-----------------------------------------------------------------------------------------|-------|-------|
| Correct species                                                                         |       | 1     |
| Balanced with state symbols                                                             |       |       |
| $C_6H_8O_7(aq) + 3 \text{ NaOH}(s) \rightarrow \text{Na}_3C_6H_5O_7(aq) + 3 H_2O(\ell)$ |       | 1     |
| or                                                                                      |       | I     |
| $C_6H_8O_7(aq) + 3 NaOH(s) \rightarrow 3 Na^+ + C_6H_5O_7^{3-}(aq) + 3 H_2O(\ell)$      |       |       |
|                                                                                         | Total | 2     |

(b) In the spaces below, complete the structures, showing **each** successive ionisation of the acidic hydrogen atoms. (3 marks)

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| One mark for each successive ionisation shown. Each structure must show negative charge on the particular oxygen atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1–3   |
| Example:<br>$O = CH_2 - C + CH_2 - C = CH_2 -$ | 2     |
| lotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3     |

## (6 marks)

(a) Label the equivalence point on the titration curve below using an arrow and record the pH value at his point. (2 marks)



| Description                                                                     | Marks |
|---------------------------------------------------------------------------------|-------|
| Label on Titration curve pointing to correct equivalence point pH 4.8 $\pm$ 0.5 | 1     |
| pH stated within range of $4.8 \pm 0.5$ (pH $4.3$ to $5.3$ )                    | 1     |
| Total                                                                           | 2     |

(b) Select an indicator from the table below that would be **best** for this titration and justify your choice. (4 marks)

| Description                                                                             | Marks |
|-----------------------------------------------------------------------------------------|-------|
| Promocrosol Croop                                                                       | 1     |
| Diomocresor Green                                                                       |       |
|                                                                                         |       |
| Justification may include up to, but not be limited to, three of the following          |       |
| recognitions:                                                                           |       |
| <ul> <li>That a change in colour of the indicator (end point) indicates that</li> </ul> |       |
| the equivalence point has been reached                                                  |       |
| The (appropriate) indicator changes colour in the range of the                          |       |
| equivalence point                                                                       |       |
| <ul> <li>Bromocresal Green is the only indicator that changes colour in the</li> </ul>  |       |
| range of the equivalence point                                                          |       |
| • Other indicators will change colour either before (Dhenelehthelein                    |       |
| Other indicators will change colour either before (Phenophinalein,                      | 1-3   |
| Alzarine Yellow R) or after the equivalence point (Methyl Yellow,                       |       |
| Bromoscresol Blue)                                                                      |       |
| <ul> <li>The use of indicators other than Bromocresal Green will produce</li> </ul>     |       |
| an incorrect titre (too large or too small)                                             |       |
| <ul> <li>The use of indicators other than Bromocresal Green will result in a</li> </ul> |       |
| systematic error or the use of Bromocresal Green will minimize                          |       |
| experimental systematic error                                                           |       |
| <ul> <li>This indicator provides an end point that is similar in pH to the</li> </ul>   |       |
| equivalence point                                                                       |       |
| Total                                                                                   | 4     |
| Iotai                                                                                   | -     |

- For each of the three organic compounds identified in the table below:use a structural formula to show the arrangement of **all** the atoms and **all** the bonds
- state **all** the intermolecular forces that exist between its molecules.

| Organic<br>compound | Full structural<br>formula                                                                                                               | All intermolecular<br>forces                    |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 3-hexanone          | H H O H H H<br>            <br>H                                                                                                         | dispersion<br>dipole-dipole                     |
| 1,1-difluoroethane  | F — C — H<br>F H                                                                                                                         | dispersion<br>dipole-dipole                     |
| butanamide          | $\begin{array}{cccccc} H & H & H \\ H & - C & - C & - C & - C \\ H & - C & - C & - C & - C \\ H & H & H & H \\ H & H & H & H \\ H & H &$ | dispersion<br>hydrogen bonding<br>dipole-dipole |

| Description                                                               | Marks |
|---------------------------------------------------------------------------|-------|
| Two marks for each organic structure. Maximum six marks.                  |       |
| Organic structure correctly drawn                                         | 2     |
| Organic structure drawn with one minor error or omission                  | 1     |
|                                                                           |       |
| One mark for each structure's intermolecular forces. Maximum three marks. |       |
| Correct intermolecular forces given                                       | 1     |
| Total                                                                     | 9     |

- Below is the structure of a particular tripeptide. (a)
  - (i) Circle the peptide bonds on the structure.



(ii) Name the **three**  $\alpha$ -amino acids which reacted to form this tripeptide. (3 marks)

| Description                          | Marks |
|--------------------------------------|-------|
| alanine                              | 1     |
| cysteine                             | 1     |
| histidine                            | 1     |
| Total                                | 3     |
| Note: No penalty for incorrect order |       |

Using the symbols (abbreviations) for these three  $\alpha$ -amino acids, give **one** other (b) polypeptide that can be formed from them. (1 mark)

| Description                                                                                                                                   |       | Marks |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Answer must contain Ala, Cys and His. but not in this order                                                                                   |       | 1     |
| <ul> <li>Answers may include, but are not limited to the following:</li> <li>Ala-His-Cys</li> <li>His-Ala-Cys</li> <li>His-Cys-Ala</li> </ul> |       |       |
|                                                                                                                                               | Total | 1     |

(11 marks)

(c) Circle and name each of the **three** functional groups on the isomer of alanine drawn below. (3 marks)

| Description                                                                                                                                      | Marks |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| One mark for each functional group. Maximum three marks.                                                                                         |       |
| Aldehyde                                                                                                                                         | 1     |
| Alcohol (hydroxyl, hydroxy)                                                                                                                      | 1     |
| Amine (amino)                                                                                                                                    | 1     |
| Alcohol $\rightarrow$ $H$<br>Amine $\rightarrow$ $H$ $H$ $H$ $O$ $O$ $H$ Aldehyde<br>Amine $\rightarrow$ $H$ |       |
| Total                                                                                                                                            | 3     |

(d) Draw a different isomer of alanine, showing clearly **all** atoms and **all** bonds. (2 marks)



Account for the difference in boiling points of the three compounds.

| Description                                                                             | Marks      |
|-----------------------------------------------------------------------------------------|------------|
| Recognition that differences in boiling points is primarily due to the differences in   |            |
| strength of the sum of the intermolecular forces                                        |            |
| or                                                                                      | 1          |
| Recognition that higher boiling points result from more energy being required to        |            |
| overcome the total intermolecular forces in the substance                               |            |
| Recognition that they will have similar dispersion forces (due to their size/structure) | 1          |
| Recognition that pentane only exhibits dispersion forces                                | 1          |
| Recognition that pentanal has dipole-dipole forces in addition to dispersion            | 1          |
| forces                                                                                  | I          |
| Recognition that pentanoic acid has hydrogen bonding in addition to                     | 1          |
| dipole-dipole and dispersion forces                                                     | I          |
| Total                                                                                   | 5          |
| Note:                                                                                   |            |
| If the cumulative effect of the intermolecular forces are not discussed a maximum of    | of 4 marks |

MARKING KEY

40% (85 Marks)

# (14 marks)

(a) What type of organic compound is an enzyme?

| Description                                                                       | Marks |
|-----------------------------------------------------------------------------------|-------|
| Enzymes are protein molecules or polypeptides (which act as biological catalysts) | 1     |
| Total                                                                             | 1     |

16

(b) Two products are formed when acetylcholine undergoes hydrolysis in the presence of the enzyme acetylcholinesterase; one of these is a charged molecule called choline and the other is a carboxylic acid. Draw structures of these **two** products. (2 marks)

| Des                             | cription |                                                                                                | Marks |
|---------------------------------|----------|------------------------------------------------------------------------------------------------|-------|
| Ethanoic acid structure correct | H        | о<br>он                                                                                        | 1     |
| Choline structure correct       | H—0 –    | $ \begin{array}{cccc} H & H & CH_{3} \\ -C & -C & -N & -CH_{3} \\ H & H & CH_{3} \end{array} $ | 1     |
|                                 |          | Total                                                                                          | 2     |

(c) Calculate the empirical formula of the combusted sample.

(9 marks)

|               |                                         | Descript      | ion     |         |       | Marks |
|---------------|-----------------------------------------|---------------|---------|---------|-------|-------|
| n(c) = n(Co)  | $O_2) = 9.020/44$                       | .01 = 0.2049  | 5 mol   |         |       | 1     |
| $n(H_2O) = 5$ | 5.169/18.016 =                          | 0.28691 mol   |         |         |       |       |
| n(H) = 2      | x n(H <sub>2</sub> O)                   |               |         |         |       | 1–2   |
| = 0.5         | 57382                                   |               |         |         |       |       |
| n(N) = n(I)   | $NO_2$ ) = 1.886/4                      | 6.01 = 0.040  | 99 mol  |         |       | 1     |
| m(O) = ma     | ass sample - m                          | n(C) - m(H) - | m(N)    |         |       |       |
| = 4.2         | 270 - (0.20495 x                        | x 12.01)      |         |         |       |       |
|               | - (0.28691)                             | x 2 x 1.008)  |         |         |       | 1_2   |
|               | - (0.04099)                             | x 14.01)      |         |         |       | 1-2   |
| = 4.2         | 270 - 2.4614 -                          | 0.5784 - 0.5  | 5743    |         |       |       |
| = 0.6         | 6559 g                                  |               |         |         |       |       |
| n(O) = 0.6    | 6559/16 = 0.04                          | 1099 mol      |         |         |       | 1     |
|               | С                                       | Н             | 0       | N       |       |       |
| n             | 0.20495                                 | 0.57382       | 0.04099 | 0.04099 |       | 1     |
| ÷ n(O)        | 5                                       | 14            | 1       | 1       |       |       |
| Correct EF    | stated as C <sub>5</sub> H <sub>1</sub> | 4ON           |         |         |       | 1     |
|               |                                         |               |         |         | Total | 9     |

...

Section Three: Extended answer

## **Question 38**

(1 mark)

|                    |                                          | Descript     | ion                        |                       | Marks |
|--------------------|------------------------------------------|--------------|----------------------------|-----------------------|-------|
| r<br>%C =<br>mas   | n(C)<br>x 100<br>ss sample               | 9.020/       | 44.01 x 12.01<br>x<br>4.27 | 100 = 57.65%          | 1     |
| n<br>%H =<br>mas   | n(H)<br>x 100<br>ss sample               | 5.169/1<br>= | 8.016 x 1.008 x<br>4.27    | 2<br>- x 100 = 13.55% | 1–2   |
| n<br>%N =<br>mas   | n(N)<br>x 100<br>ss sample               | 1.886/4      | 46.01 x 14.01<br>x<br>4.27 | 100 = 13.45%          | 1     |
| %O = 100<br>= 15.3 | - %C - %H - %N<br>35%                    | l            |                            |                       | 2     |
| %                  | C<br>57.65                               | H<br>13.55   | O<br>15.35                 | N<br>13.45            |       |
| ÷M                 | 4.800                                    | 13.44        | 0.9594                     | 0.9600                | 1     |
| ÷small             | 5                                        | 14           | 1                          | 1                     | 1     |
| Correct EF         | stated as C <sub>5</sub> H <sub>14</sub> | ON           |                            |                       | 1     |
|                    |                                          |              |                            | Total                 | 9     |

(d) Use your calculated empirical formula to demonstrate that the enzyme is **active**.

(2 marks)

| Description                                                                                                                                                           | Marks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Comparison made of determined empirical formula ( $C_5H_{14}ON$ ) with the formula of the desired product (choline) which is $C_5H_{14}ON$                            | 1     |
| Recognition that the empirical formula matches that of the desired product (choline), not the initial reactant acetylcholine. Therefore the enzyme is working/active. | 1     |
| Total                                                                                                                                                                 | 2     |

## (16 marks)

(a) What is the volume of sulfur dioxide produced if 2.2 tonne of pentlandite is combusted in air? The process has a yield of 72.0%, and takes place at 300.0 °C and 165.0 kPa. Express your answer to the appropriate number of significant figures.

Molar mass  $Fe_9Ni_9S_8 = 1287.42 \text{ g mol}^{-1}$ .

(7 marks)

| Description                                                                                    | Marks |
|------------------------------------------------------------------------------------------------|-------|
| Conversion of mass to moles                                                                    | 4     |
| For 100% = $m(Fe_9Ni_9S_8)/M(Fe_2Ni_9S_8) = 2.2 \times 10^6 \text{ g}/1287.42$                 |       |
| Accurate figure; accounts for correct molar mass and calculation                               | 1     |
| = 1.7089 x 10 <sup>3</sup> mol                                                                 | I     |
| Recognition of 1:8 mol ratio                                                                   |       |
| $n(SO_2) = 8 \times n (Fe_9Ni_9S_8)$                                                           | 1     |
| $= 8 \times 1.7089 \times 10^3$                                                                | •     |
| $= 1.3671 \times 10^4$                                                                         |       |
| Recognition of efficiency conversion                                                           | 1     |
| At 72% efficiency $n(SO_2) = 0.72 \times 1.3671 \times 10^4 = 9.84284 \times 10^3 \text{ mol}$ | I     |
| Correct use of ideal gas equation                                                              |       |
| $V(SO_2) = nRT/P = (9.843 \times 10^3 \times 8.314 \times 573.15)$                             | 1     |
| 165.0                                                                                          |       |
| Correct answer (also accounts for use of temperature conversion)                               |       |
| = 284262 L                                                                                     | 1     |
| $= 2.84262 \times 10^5 L$                                                                      |       |
| Correct to <b>two</b> significant figures                                                      | 1     |
| $= 2.8 \times 10^5 L$                                                                          | I     |
| Total                                                                                          | 7     |

(b) State **two** justifications for the use of catalysts in this process.

(2 marks)

| Description                                                                                                                                                                                                                                                                                                                                                                       | Marks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| One mark for each justification. Maximum two marks.                                                                                                                                                                                                                                                                                                                               | 1–2   |
| Answers may include, but are not limited to the following:                                                                                                                                                                                                                                                                                                                        |       |
| <ul> <li>increases rate of formation of (the desired) product</li> <li>better yield of at lower temperature, so catalysts make the rate viable</li> <li>reusable making them cost effective</li> <li>lowers operating temperature and pressure <ul> <li>so saving fuel which is a major cost</li> <li>making it safer</li> <li>reducing thermal pollution.</li> </ul> </li> </ul> |       |
| Total                                                                                                                                                                                                                                                                                                                                                                             | 2     |

1

(c) State the effect of raising the pressure of the system on both the rate and yield.

(2 marks)

| Description       | Marks |
|-------------------|-------|
| Rate – increases  | 1     |
| Yield – increases | 1     |
| Total             | 2     |

(d) Use the Collision Theory to explain the effect of raising the total pressure on the yield. (5 marks)

| Description                                                              | Marks |
|--------------------------------------------------------------------------|-------|
| When pressure is increased, (the reactant and product) particles are     | 1     |
| orced closer together increasing rate (frequency) of collision           | 1     |
| Which in turn increases the rate of reaction of both the forward and     | 1     |
| reverse reactions                                                        | 1     |
| Ratio of gaseous particles of LHS to RHS as written is 3:2. The forward  | 1     |
| eaction as written has a greater proportion of gas particles hence       | 1     |
| The forward reaction proceeds faster than the reverse reaction until the | 1     |
| equilibrium conditions are re-established                                | I     |
| This results in a greater proportion of products of the forward reaction | 1     |
| with a resultant shift in the equilibrium position)                      |       |
| Total                                                                    | 5     |

# **Question 40**

# (11 marks)

(a) Equation two can be represented as half equations. Write the reduction half equation.

(1 mark)

| Description                                                                           | Marks |
|---------------------------------------------------------------------------------------|-------|
| Cu <sup>+</sup> + e <sup>-</sup> → Cu<br>(No penalty for not including state symbols) | 1     |
| Tota                                                                                  | I 1   |

- (b) Explain the electrolytic process used to purify copper. Include:
  - a brief overview of the process
  - a labelled diagram of the electrolytic cell
  - the relevant oxidation and reduction half equations
  - discussion of impurities and how they are separated from the copper. (10 marks)

| Description                                                                                                                                                                                       | Marks |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| electron flow<br>Cathode<br>high purity<br>copper<br>Cu <sup>2+</sup><br>Pb <sup>2+</sup><br>Zn <sup>2+</sup><br>Mg <sup>2+</sup><br>Anode<br>Low<br>purity<br>copper<br>Anode                    |       |
|                                                                                                                                                                                                   |       |
| Electrolytic cell drawn with:<br>• the external emf/battery                                                                                                                                       | 1     |
| <ul> <li>with terminals or labelled arrow indicating the direction of electron</li> </ul>                                                                                                         | 1     |
| flow<br>the ende being the impure copper (or stated in explanation)                                                                                                                               | 1     |
| <ul> <li>cathode the pure copper (or stated in explanation)</li> </ul>                                                                                                                            | 1     |
| Recognition that impure copper (oxidises) and dissolves, releasing Cu <sup>2+</sup> ions into solution                                                                                            | 1     |
| The Cu <sup>2+</sup> ions released into the solution (migrate to the cathode) and are                                                                                                             | 1     |
| reduced to form pure copper metal on the cathode<br>Oxidation equation $Cu \rightarrow Cu^{2+} + 2e^{-}$                                                                                          | 1     |
| Reduction equation $Cu^{2+} + 2e^- \rightarrow Cu$                                                                                                                                                | 1     |
| Recognition that the impurities within the copper are removed/separated                                                                                                                           |       |
| from the impure copper because they are:                                                                                                                                                          |       |
| <ul> <li>(sand, organic materials and) metals less reactive that copper, e.g.</li> <li>Ag, Au won't oxidise and remain on the anode or will fall to the bottom of the cell as a sludge</li> </ul> | 1     |
| <ul> <li>not reduced, so stay in the solution; metals more reactive than</li> </ul>                                                                                                               |       |
| copper will also oxidise, but at the cathode copper(II) will be                                                                                                                                   | 1     |
| Total                                                                                                                                                                                             | 10    |
|                                                                                                                                                                                                   |       |

## **Question 41**

## (18 marks)

(a) Write the equilibrium expression for this reaction when it is in equilibrium. (2 marks)

|     |                                                                         |         | Description                                                                            |       | Marks |
|-----|-------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------|-------|-------|
| K = | p <u>NO<sub>2</sub>(g)²</u><br>pN <sub>2</sub> (g) pO <sub>2</sub> (g)² | or      | <u>[NO<sub>2</sub>]<sup>2</sup></u><br>[N <sub>2</sub> ][O <sub>2</sub> ] <sup>2</sup> |       | 2     |
| One | superscript incorre                                                     | ct or m | issing                                                                                 |       | 1     |
|     |                                                                         |         |                                                                                        | Total | 2     |

(b) Assuming all other conditions remain constant, what happens to the equilibrium constant after the pressure of the system, is lowered and equilibrium is re-established? (1 mark)

| Description    | Marks |
|----------------|-------|
| No change in K | 1     |
| Total          | 1     |

(c) (i) On the axes below, draw the forward ( — ) and reverse (- - -) reaction rates, starting at the moment the oxygen and nitrogen gases begin to react with each other until after equilibrium has been established at time A. Continue the graph until time B.
 (3 marks)



| Description                                      | Marks |
|--------------------------------------------------|-------|
| Both curves have the correct shape & orientation | 1     |
| Both curves meeting at point A                   | 1     |
| Straight line between point A and B              | 1     |
| Total                                            | 3     |

(ii) On the same axes, draw and label clearly the effect of conducting the same reaction at a higher temperature. (2 marks)

| Description                | Marks |
|----------------------------|-------|
| The added curves show:     |       |
| Equilibrium reached sooner | 1     |
| Reaction rates are higher  | 1     |
| Total                      | 2     |

## Question 41 (continued)

(d) On the axes below, draw separate curves to show how the concentrations of the three gases change with time, starting at the moment the oxygen and nitrogen gases begin to react with each other until the system reaches equilibrium at Time E1. Continue the graph from Time E1 to Time E2. Assume that the initial concentrations of oxygen and nitrogen are identical.



| Time                                                                                          | E3    |
|-----------------------------------------------------------------------------------------------|-------|
| Description                                                                                   | Marks |
| Correct shape and orientation for curves depicting N <sub>2</sub> (aq) and O <sub>2</sub> (g) | 1     |
| Correct shape and orientation for curve depicting NO <sub>2</sub> (g)                         | 1     |
| Curve for NO <sub>2</sub> (g) starting at zero                                                | 1     |
| Ratio of change 2:1 for $O_2(g)$ compared with $N_2(g)$                                       | 1     |
| Straight horizontal lines between E1 and E2                                                   | 1     |
| Total                                                                                         | 5     |

At Time E2 shown on the axis, the reaction vessel is doubled in volume, and the system (e) is then again allowed to reach equilibrium at Time E3. On the same graph above, show how the concentrations of the three gases would change in response to the change in volume, from Time E2 until equilibrium is re-established at Time E3. (3 marks)

| Description                                                       | Marks |
|-------------------------------------------------------------------|-------|
| Immediate reduction (halving) of concentration for all gases      | 1     |
| Correct shape and orientation for curve for $N_2(g)$ and $O_2(g)$ | 1     |
| Correct shape and orientation for curve for NO <sub>2</sub> (g)   | 1     |
| Total                                                             | 3     |

(f) What does the stability of this composition indicate about the equilibrium constant and energy requirements of the reaction between nitrogen and oxygen gases? (2 marks)

| Description                                                   | Marks |
|---------------------------------------------------------------|-------|
| (Reactants favoured), the equilibrium constant would be small | 1     |
| Energy requirements would be large                            |       |
| or                                                            | 1     |
| Activation energy would be large                              |       |
| Total                                                         | 2     |

## **Question 42**

## MARKING KEY

# (26 marks)

(a) Demonstrate, by means of calculation, that the concentration of HCl(aq) solution is  $3.76 \times 10^{-6}$  mol L<sup>-1</sup>. (5 marks)

| Description                                                                          |       | Marks |
|--------------------------------------------------------------------------------------|-------|-------|
| n(Na <sub>2</sub> CO <sub>3</sub> ) =m/M = 5.74 x 10 <sup>-6</sup> mol               |       | 1     |
| $c(Na_2CO_3) = n/2 = 2.868 \times 10^{-6} \text{ mol } L^{-1}$                       |       | 1     |
| $n(Na_2CO_3) = c \times 0.0164$ (mL to L conversion) = 4.7038 x 10 <sup>-8</sup> mol |       | 1     |
| n(HCl) = 2 x n(Na <sub>2</sub> CO <sub>3</sub> ) = 9.4077 x 10 <sup>-8</sup> mol     |       | 1     |
| c(HCI) = n/0.025 (mL to L conversion) = 3.76 x 10 <sup>-6</sup> mol L <sup>-1</sup>  |       | 1     |
| •                                                                                    | Total | 5     |

(b) Outline **two** reasons why sodium hydroxide, NaOH(s) is **not** a suitable primary standard for this titration. (2 marks)

| Description                                                                                                                                                                                                                                                                                    | Marks |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| One mark for each reason. Two marks maximum.                                                                                                                                                                                                                                                   |       |  |
| Answers may include, but are not limited to the following:                                                                                                                                                                                                                                     |       |  |
| <ul> <li>difficult to obtain in a very pure form</li> <li>readily absorbs moisture, H<sub>2</sub>O from air (deliquescent) or hydroscopic</li> <li>readily absorbs carbon dioxide, CO<sub>2</sub> from air</li> <li>mass varies over time</li> <li>has a relatively low molar mass.</li> </ul> |       |  |
| Total                                                                                                                                                                                                                                                                                          | 2     |  |

(c) Calculate the concentration of the NaOH(aq) solution.

(3 marks)

| Description                                                | Marks |
|------------------------------------------------------------|-------|
| $n(HCI) = cV = 8.02 \times 10^{-8} mol$                    | 1     |
| n(HCI) = n(NaOH)                                           | 1     |
| $c(NaOH) = 8.02 \times 10^{-8}/0.025 (mL to L conversion)$ | 1     |
| $= 3.21 \times 10^{-6} \text{ mol } \text{L}^{-1}$         | 1     |
| Total                                                      | 3     |

(d) Complete the table below to state with what the following pieces of glassware should be rinsed for this titration. (3 marks)

|               |   | Description                                     | Marks |
|---------------|---|-------------------------------------------------|-------|
| Burette       | — | NaOH solution                                   | 1     |
| Conical flask | - | distilled or deionised water (H <sub>2</sub> O) | 1     |
| Pipette       | - | diluted rainwater                               | 1     |
|               |   | Total                                           | 3     |

(e) Calculate the average titre volume and record it in the table above.

(1 mark)

| Description                                                               | Marks |
|---------------------------------------------------------------------------|-------|
| 19.66                                                                     | 1     |
| Total                                                                     | 1     |
| Note:                                                                     |       |
| Units (mL) stated in table heading and first titre is not used in average |       |

(f) Calculate the pH of the undiluted rainwater sample. Determine if it would be classified as acid rain or not. (6 marks)

| Description                                                  | Marks |  |
|--------------------------------------------------------------|-------|--|
| n(NaOH) = conc. and titre volume from part c and e           |       |  |
| = 3.21 x 10 <sup>-6</sup> x 1.966 x 10 <sup>-2</sup>         | 1     |  |
| = 6.31 x 10 <sup>-8</sup> mol                                |       |  |
| $n(H^+) = n(NaOH)$                                           |       |  |
| $c(H^+)_{25mL} = 6.31 \times 10^{-8}/0.025$                  | 1     |  |
| $= 2.52 \text{ x } 10^{-6} \text{ mol } \text{L}^{-1}$       |       |  |
| $n(H^+)_{250mL} = 2.52 \times 10^{-6} \times 0.250$          | 1     |  |
| $= 6.30 \times 10^{-7} \text{ mol}$                          | 1     |  |
| $c(H^+)_{100mL} = 6.30 \times 10^{-7}/0.100$                 | 1     |  |
| $= 6.30 \times 10^{-6} \text{ mol } \text{L}^{-1}$           |       |  |
| $pH = -log(6.30 \times 10^{-6}) = 5.20$                      | 1     |  |
| The rain water sample would not be classified as acid rain   | 1     |  |
| (No marks awarded unless accompanied by supporting working.) |       |  |
| Total                                                        | 6     |  |

(g) If carbon dioxide,  $CO_2(g)$  alone accounts for rain with a pH of 5.60, then calculate the volume of sulfur dioxide,  $SO_2(g)$  at 16.0 °C and 97.2 kPa, that would also need to be dissolved to produce 0.100 L of an acid rain sample with a pH of 4.0. Use the equation below.

$$SO_2(g) + H_2O(\ell) \rightleftharpoons H_2SO_3(aq)$$

For this calculation, assume the complete ionisation of  $H_2SO_3(aq)$ . (6 marks)

| Description                                                          | Marks |
|----------------------------------------------------------------------|-------|
| $pH = 4.0$ $c(H^+)_{total} = 1 \times 10^{-4} \text{ mol } L^{-1}$   |       |
| pH = 5.6                                                             | 1     |
| $c(H^+)_{CO2} = 2.51 \times 10^{-6} \text{ mol } L^{-1}$             | Ι     |
| $C(H^+)_{SO2} = C(H^+)_{total} - C(H^+)_{CO2}$                       |       |
| $= 100.0 \times 10^{-6} - 2.51 \times 10^{-6}$                       | 1     |
| = 9.75 x 10 <sup>-5</sup> mol L <sup>-1</sup>                        |       |
| $n(H^+)_{SO2} = 9.75 \times 10^{-5} \times 0.100$                    | 1     |
| = 9.75 x 10 <sup>-6</sup> mol                                        | I     |
| $n(H_2SO_3) = n(H^+)/2$                                              |       |
| $= 9.75 \times 10^{-6}/2$                                            | 1     |
| $= 4.88 \times 10^{-6} \text{ mol}$                                  |       |
| 1:1 ratio between SO <sub>2</sub> and H <sub>2</sub> SO <sub>3</sub> | 1     |
| $V(SO_2) = nRT/P$                                                    |       |
| = 4.88 x 10 <sup>-6</sup> x 8.314 x 289.15/97.2                      | 1     |
| $= 1.21 \times 10^{-4} L$                                            |       |
| Total                                                                | 6     |

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence.

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107