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Section One: Calculator-free 35% (53 marks) 
 
Question 1 (4 marks) 
 

Functions f and g are defined as ( ) ( )lnf x x=  and ( ) 1g x
x

= . 

 
(a) Determine an expression for ( )g f x . (1 mark)  
 

Solution 
( ) ( )( )

( )

ln

1
ln

    

               

og f x g x

x

=

=
 

Specific behaviours 
 writes the correct expression for ( )g f x  

 
 
(b) For ( )g f x , state the: 
 
 (i) domain. (2 marks) 
 

Solution 
{ }:  0, 1gofD x x x= > ≠  

Specific behaviours 
 states 0x >  
 states 1x ≠  

 
 
 (ii) range. (1 mark) 
 

Solution 
{ }:  0gof y yR ≠=  

Specific behaviours 
 states 0y ≠  
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Question 2 (7 marks) 
 
Give exact expressions for each of the following in the form a bi+ :  
 

(a) 
( )2

2
1

i
i
+

−
. (3 marks) 

 
Solution 

( )

( )

2

2

2 2
21

2 2 1 1
2 1 2 2

     

                      

i i i
i ii

i i i i

+ −
= ×

−−

− +
= = = +

− −

 

Specific behaviours 
 writes the conjugate and expands the denominator correctly 
 multiplies by a form of one correctly to determine a real denominator 
 simplifies correctly in the form a bi+  

 
 

(b) ( )5
3 .i−  (4 marks) 

 
Solution 

( )
5

5
3 2

6
532
6
5 532 cos sin
6 6

3 132
2 2

16 3 16

 

              

              

              

              

i cis

cis

i

i

i

π

π

π π

  − = −  
  
 = − 
 

    = − + −    
    

  = − + −     

= − −

 

Specific behaviours 
 determines the modulus of the polar form correctly 
 determines the argument of the polar form correctly 
 applies DeMoivre’s Theorem correctly 
 simplifies correctly in the form a bi+  
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Alternative solution for Question Q2(b). 
 

Alternative Solution 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

5

5 4 3 22 3 4 5

3

3 5 3 10 3 10 3 5 3

9 3 45 30 3 1 30 1 5 3 1 1

9 3 45 30 3 30 5 3

16 3 16

         

              

              

  

i

i i i i i

i i i

i i i

i

−

= + − + − + − + − + −

= + − + − + − − + + −

= − − + + −

= − −

 

 
Specific behaviours 

 expands using the binomial theorem correctly 
 evaluates powers of 3  correctly 
 evaluates powers of  i  correctly 
 simplifies correctly in the form a bi+  
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Question 3 (5 marks) 
 
Consider ( ) 3 22 5 12f z z z z= + − +  where z is a complex number. 
 
(a) Show that ( )4z +  is a factor of ( )f z . (2 marks) 
 

Solution 
( )
( ) ( )
4 64 32 20 12 0

4 is a factor of      
f

z f z

− = − + + + =

∴ +
 

Specific behaviours 
 substitutes 4z = −  correctly 
 provides evidence that  i.e. not just the statement ( )4 0f − =  

 
 
(b) Solve the equation 3 22 5 12 0z z z+ − + = . (3 marks) 
 

Solution 
( ) ( )( )

( ) ( )( )
( )

2

2

24

4 2 3 0

4 1 2 0

1 2

4 1 2

i.e.    

     or  

    or   

z

f z z z z

z z

z

z z i

∴ = −

= + − + =

+ − + =

− = −

∴ = − = ±

 

Specific behaviours 
 determines the quadratic factor correctly 
 states that 4z = −  is a solution 
 determines the complex solutions to the quadratic equation correctly 
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Question 4 (6 marks) 
 

(a) Express 
( )( )

8
2 3
x

x x
−

+ −
 in the form .

2 3
a b

x x
+

+ −
 (3 marks) 

 
Solution 

( ) ( )
( )( )

( ) ( )
( )( ) ( )( )

3 2
2 3 2 3

2 3 8
2 3 2 3

    

                        

a x b xa b
x x x x

a b x b a x
x x x x

− + +
+ =

+ − + −

+ + − −
= =

+ − + −

 

Hence  
1

2 3 8
   

 
a b

b a
+ = 

− = − 
  solving gives   2, 1 a b= = −  

i.e.  
( )( )

8
2 3

  x
x x

−
=

+ −
2 1

2 3
  

x x
−

+ −
 

Specific behaviours 
 obtains the correct expression for the equivalent numerator in terms of , ,a b x   
 forms the equations to solve for a, b correctly 
 determines the correct values for a, b 

 
 

(b) Hence determine
( )( )

8
2 3
x dx

x x
−

+ −∫ . (3 marks) 

 
Solution 

( )( )

( )
( )

2

8 2 1
2 3 2 3

2ln 2 ln 3

2
ln

3

      

                               

                               

x dx dx
x x x x

x x c

x
c

x

−  = − + − + − 

= + − − +

+
= +

−

∫ ∫
  

Specific behaviours 
 substitutes for the integrand using the result from part (a)  
 anti-differentiates correctly using the natural logarithm function 
 uses a constant of integration with the anti-derivative 
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Question 5 (7 marks) 
 
Evaluate the following definite integrals exactly. 

(a) 
4

4

0

12sin 2 cos 2  x x dx

π

∫                 Put  sin 2u x=  (4 marks) 

 
Solution 

( )

1 14
4 4 4

0 0 0

1 55

0

12sin 2 cos 2 12 .cos 2 . 6
2cos 2

6 16 60
5 5 5

       

                                      

dux x dx u x u du
x

u

π

= =

  
 = = − =      

∫ ∫ ∫
 

Specific behaviours 
 expresses the integrand correctly in terms of u    
 changes the limits of integration correctly 
 writes the correct anti-derivative 
 evaluates correctly 

 
 

(b) 

1
2

2

0

tan
2
x dxπ 

 
 ∫  (3 marks) 

 
Solution 

( )

1 1
2 2

2 2

0 0
1
2

0

tan sec 1
2 2

2 tan
2

2 1 2 2 1tan tan 0 0
4 2 2

     

                        

                            

x xdx dx

x x

    = −        

  = −    

    = − − − = −        

∫ ∫
π π

π
π

π
π π π

 

Specific behaviours 

 uses the trigonometric identity to express the integrand in terms of  2sec
2
xπ 

 
 

  

 anti-differentiates correctly 
 evaluates correctly 
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Question 6 (6 marks) 
 
(a) Solve the system of equations.      (3 marks) 
 
 ( )

( )
( )

... 

... 

4      

3 8    ... 2

2 0    

1

3

x y z

x y z

x y z

+ + =

− + =

− + =

 

 
Solution 

Consider ( ) ( )2 3−     8  x∴ =  

  

( )
( )
( ) ( )

1 : 4

2 : 16

1 2 : 2 20
10

6

      

  

  
  
  

y z

y z

z
z
y

+ = −

− + = −

+ = −

∴ = −
∴ =

 

Hence the solution is   8
6
10

x
y
z

=
=
= −

 

Specific behaviours 
  eliminates a variable correctly using an appropriate technique 
  solves correctly for the first variable 
  solves correctly for the second and third variables 
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Suppose that the third equation in part (a) is changed to 2 0x y kz− + = . The first two equations 
remain unchanged. 
 
(b) Determine the value of the constant k so that the changed system of equations has no 

solution. (3 marks) 
 

Solution 
System is now :  ( )

( )
( )

... 

... 

4      

3 8    ... 2

2 0  

1

3

x y z

x y z

x y kz

+ + =

− + =

− + =

 

Consider  ( ) ( ) ( )
( ) ( ) ( ) ( )
1 2 : 4 2 12 ... 4

2 3 : 1 8 ... 5

         
     

x z

x k z

+ + =

− + − =

  

From ( ) ( )5 : 8 1  x k z= − −     substituting into ( ) ( )( )4 : 4 8 1 2 12  k z z− − + =   

i.e.  4 2 20kz z− = −   
i.e.  ( )4 2 20z k − = −   
Hence for there to be no solution we require 4 2 0k − =      

i.e.  
1
2

k =  

Specific behaviours 
  eliminates two variables to express z correctly (or another variable) in terms of k 
  states that the variable coefficient must be ZERO for no solution 
  determines the value of k 
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Question 7 (7 marks) 

Points ,A B  have respective position vectors  
4
0
3

 
 
 
 
 

 and 
0
2
5

 

 

 
 − 
 
 

.  

 
(a) Determine the vector equation for the sphere that has AB  as its diameter. (3 marks) 
 

Solution 

Centre point  C   
4 0 2

1 0 2 1
2

3 5 4

  
   

  

      
      = + − = −      
            

 

Radius  2 2 2

2
1 2 1 1 6

1
            

 
r AC

− 
 = = − = + + = 
 
 



  

Equation for circle with diameter  AB :      
2

1 6
4

      r
 
 − − = 
 
 



       

Specific behaviours 
 determines the position vector for the centre correctly 
 determines the radius correctly 
 forms the vector equation for the sphere correctly 
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If point O  is the origin, consider the plane that contains the vectors OA


 and .OB


 
 
(b) Determine the vector equation for this plane in the form  .r n c⋅ =

 

 (4 marks) 
 

Solution 
 

Use 

( ) ( )( )
( ) ( )
( ) ( )

0 5 2 34 0 6
0 2 0 3 4 5 20
3 5 84 2 0 0

   
        

 
n OA OB

 − −     
      = × = × − = − = −      
      −− −      

 



   or     
3
10
4

  k
k

k

 
 − 
 − 

  

Since 
0
0
0

  
 
  ∈ 
 
 

 plane, then  0c =    i.e.  equation of plane is   
6
20 0
8

  
    r

 
 ⋅ − = 
 − 



 

 
Specific behaviours 

 uses the idea of the cross product of  OA


 and OB


 to determine the normal 
 determines the cross product correctly 
 states that the constant 0c =   
 forms the vector equation for the plane correctly 

 
or 
 

 
Alternative Solution 

Let    
a

n b
c

 
 =  
 
 



 Hence  0    OA n⋅ =




   i.e.  4 3 0a c+ =   

                        Also  0    OB n⋅ =




  i.e.  2 5 0b c− + =   
Choose  3, 10, 4  a b c= − = = −   

Since 
0
0
0

  
 
  ∈ 
 
 

 Plane, then  0c =    i.e.  equation of plane is   
6
20 0
8

  
    r

 
 ⋅ − = 
 − 



 

Specific behaviours 
 uses the idea that the dot product with the normal vector must be ZERO 
 determines the normal vector from the dot product equations 
 states that the constant 0c =  
 forms the vector equation for the plane correctly 
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Question 8 (11 marks) 
 

The graph of ( ) ( )21 4  f x x= − −  is shown below. 

 

(a) Sketch the graph of 
( )
1y

f x
=  on the coordinate axes below. (4 marks) 

 
 
Solution 

Indicated on the graph above. 
Specific behaviours 

 indicates vertical asymptotes at 1x = − and 3x =  
 indicates 0y +→  for  x →∞  

 indicates a local maximum at 1x =  
 indicates the correct curvature and behaviour around 1x = −  and 3x =  
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(b) Sketch the graph of ( )y f x=  on the coordinate axes below. (2 marks) 
 

 
 

Solution 
Indicated on the graph above. 

Specific behaviours 
 indicates the point ( )3,0−  on the graph 

 indicates symmetry about 0x =    
 
 
(c) The domain of function f  is restricted to x k≤  so that ( )1y f x−=  is a function. If this 

restricted domain represents the largest possible domain, state the value for the 
constant .k  Explain.  (2 marks) 

 
Solution 

Restrict the domain of f  to  { }| 1x x ≤   i.e.  1k =  
This is chosen so that function f is a one-to-one function  OR  function f will be 
strictly decreasing (or stationary) and not decreasing and then increasing. 

Specific behaviours 
 states the correct domain or states the value for k  
 provides an adequate explanation that f will be one-to-one 
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(d) Using the restriction x k≤ , determine the defining rule for ( )1y f x−= . 

 Also state the domain for ( )1y f x−= . (3 marks) 
 

Solution 
( ) ( )

( )

( )
1

2 21

2

1

: 1 4 : 1 4

4 1

1 4

1 4

              

                                 i.e.  

                                 i.e.      since  

                                        

ff

f y x f x y

x y

y x R D

f x x

−

−

−

= − − ∴ = − −

+ = −

− = − + =

∴ = − + 14,       since     f f
x R D −≥ − =

 

Specific behaviours 
 interchanges ,x y  to write the rule for the inverse 

 obtains the correct defining rule for ( )1y f x−=  

 states the correct domain for ( )1y f x−=  
 

 
 
 
 
 
 

End of questions 
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