MATHEMATICS SPECIALIST

Calculator-free

ATAR course examination 2016

Marking Key

[^0]
Section One: Calculator-free

Question 1

Functions f and g are defined as $f(x)=\ln (x)$ and $g(x)=\frac{1}{x}$.
(a) Determine an expression for $g \circ f(x)$.

(b) For $g \circ f(x)$, state the:
(i) domain.
(2 marks)

			Solution
$D_{\text {gof }}=\{x: x>0, x \neq 1\}$			
	Specific behaviours		
\checkmark states $x>0$			
\checkmark states $x \neq 1$			

(ii) range.

	Solution
$R_{\text {gof }}=\{y: y \neq 0\}$	
	Specific behaviours
\checkmark states $y \neq 0$	

Question 2

Give exact expressions for each of the following in the form $a+b i$:
(a) $\frac{\overline{2+i}}{(1-i)^{2}}$.

$\frac{\overline{2+i}}{(1-i)^{2}}=\frac{2-i}{-2 i} \times \frac{i}{i}$
$=\frac{2 i-i^{2}}{-2(-1)}=\frac{2 i+1}{2}=\frac{1}{2}+i$
Spelution
\checkmark writes the conjugate and expands the denominator correctly \checkmark multiplies by a form of one correctly to determine a real denominator \checkmark simplifies correctly in the form $a+b i$

(b) $(\sqrt{3}-i)^{5}$.

Solution

$$
\begin{aligned}
(\sqrt{3}-i)^{5} & =\left(2 \operatorname{cis}\left(-\frac{\pi}{6}\right)\right)^{5} \\
& =32 \operatorname{cis}\left(-\frac{5 \pi}{6}\right) \\
& =32\left(\cos \left(-\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)\right) \\
& =32\left(-\frac{\sqrt{3}}{2}+i\left(-\frac{1}{2}\right)\right) \\
& =-16 \sqrt{3}-16 i \quad \text { Specific behaviours }
\end{aligned}
$$

\checkmark determines the modulus of the polar form correctly
\checkmark determines the argument of the polar form correctly
\checkmark applies DeMoivre's Theorem correctly
\checkmark simplifies correctly in the form $a+b i$

Alternative solution for Question Q2(b).

Alternative Solution
$(\sqrt{3}-i)^{5}$ $=(\sqrt{3})^{5}+5(\sqrt{3})^{4}(-i)+10(\sqrt{3})^{3}(-i)^{2}+10(\sqrt{3})^{2}(-i)^{3}+5(\sqrt{3})(-i)^{4}+(-i)^{5}$ $=9 \sqrt{3}+45(-i)+30 \sqrt{3}(-1)+30(-i)(-1)+5 \sqrt{3}(1)+(1)(-i)$ $=9 \sqrt{3}-45 i-30 \sqrt{3}+30 i+5 \sqrt{3}-i$ $=-16 \sqrt{3}-16 i$

Specific behaviours

\checkmark expands using the binomial theorem correctly
\checkmark evaluates powers of $\sqrt{3}$ correctly
\checkmark evaluates powers of i correctly
\checkmark simplifies correctly in the form $a+b i$

Question 3

Consider $f(z)=z^{3}+2 z^{2}-5 z+12$ where z is a complex number.
(a) Show that $(z+4)$ is a factor of $f(z)$.

Solution
$f(-4)=-64+32+20+12=0$
$\therefore \quad(z+4)$ is a factor of $f(z)$
\checkmark substitutes $z=-4$ correctly
\checkmark provides evidence that i.e. not just the statement $f(-4)=0$

(b) Solve the equation $z^{3}+2 z^{2}-5 z+12=0$.
(3 marks)

$f(z)=(z+4)\left(z^{2}-2 z+3\right)=0$
i.e. $\quad(z+4)\left((z-1)^{2}+2\right)=0$
$\therefore \quad z=-4$ or $(z-1)^{2}=-2$
$\therefore z=-4$ or $z=1 \pm \sqrt{2} i \quad$ Specificic behaviours
\checkmark determines the quadratic factor correctly
\checkmark states that $z=-4$ is a solution
\checkmark determines the complex solutions to the quadratic equation correctly

Question 4

(a) Express $\frac{x-8}{(x+2)(x-3)}$ in the form $\frac{a}{x+2}+\frac{b}{x-3}$.

$$
\begin{aligned}
\frac{a}{x+2}+\frac{b}{x-3} & =\frac{a(x-3)+b(x+2)}{(x+2)(x-3)} \\
& =\frac{(a+b) x+(2 b-3 a)}{(x+2)(x-3)}=\frac{x-8}{(x+2)(x-3)}
\end{aligned}
$$

Hence $\left.\begin{array}{c}a+b=1 \\ 2 b-3 a=-8\end{array}\right\}$ solving gives $a=2, b=-1$
i.e. $\frac{x-8}{(x+2)(x-3)}=\frac{2}{x+2}-\frac{1}{x-3}$

Specific behaviours

\checkmark obtains the correct expression for the equivalent numerator in terms of a, b, x
\checkmark forms the equations to solve for a, b correctly
\checkmark determines the correct values for a, b
(b) Hence determine $\int \frac{x-8}{(x+2)(x-3)} d x$.

Solution	Solution
	$\begin{aligned} \int \frac{x-8}{(x+2)(x-3)} d x & =\int\left(\frac{2}{x+2}-\frac{1}{x-3}\right) d x \\ & =2 \ln \|x+2\|-\ln \|x-3\|+c \\ & =\ln \left\|\frac{(x+2)^{2}}{(x-3)}\right\|+c \end{aligned}$
	Specific behaviours
	\checkmark substitutes for the integrand using the result from part (a) \checkmark anti-differentiates correctly using the natural logarithm function \checkmark uses a constant of integration with the anti-derivative

Question 5

Evaluate the following definite integrals exactly.
(a)
 Put $u=\sin 2 x$

Solution

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} 12 \sin ^{4} 2 x \cos 2 x d x & =\int_{0}^{1} 12 u^{4} \cdot \cos 2 x \cdot \frac{d u}{2 \cos 2 x}=\int_{0}^{1} 6 u^{4} d u \\
& =\left[\frac{6 u^{5}}{5}\right]_{0}^{1}=\left(\frac{6\left(1^{5}\right)}{5}-0\right)=\frac{6}{5}
\end{aligned}
$$

Specific behaviours

\checkmark expresses the integrand correctly in terms of u
\checkmark changes the limits of integration correctly
\checkmark writes the correct anti-derivative
\checkmark evaluates correctly
(b) $\int_{0}^{\frac{1}{2}} \tan ^{2}\left(\frac{\pi x}{2}\right) d x$

| $\int_{0}^{\frac{1}{2}} \tan ^{2}\left(\frac{\pi x}{2}\right) d x$ $=\int_{0}^{\frac{1}{2}}\left(\sec ^{2}\left(\frac{\pi x}{2}\right)-1\right) d x$
 $=\left[\frac{2}{\pi} \tan \left(\frac{\pi x}{2}\right)-x\right]_{0}^{\frac{1}{2}}$
 $=\left(\frac{2}{\pi} \tan \left(\frac{\pi}{4}\right)-\frac{1}{2}\right)-\left(\frac{2}{\pi} \tan (0)-0\right)=\frac{2}{\pi}-\frac{1}{2}$
 Specific behaviours
 \checkmark uses the trigonometric identity to express the integrand in terms of $\sec ^{2}\left(\frac{\pi x}{2}\right)$
 \checkmark
 \checkmark anti-differentiates correctly |
| ---: | :--- |

Question 6

(a) Solve the system of equations.
$x+y+z=4$
$3 x-y+z=8$
$2 x-y+z=0$

Solution

Consider (2)-(3) $\quad \therefore \quad x=8$
(1): $y+z=-4$
(2): $-y+z=-16$
$(1)+(2): 2 z=-20$
$\therefore \quad z=-10$
$\therefore y=6$
Hence the solution is $x=8$

$$
y=6
$$

$$
z=-10
$$

Specific behaviours

\checkmark eliminates a variable correctly using an appropriate technique
\checkmark solves correctly for the first variable
\checkmark solves correctly for the second and third variables

Suppose that the third equation in part (a) is changed to $2 x-y+k z=0$. The first two equations remain unchanged.
(b) Determine the value of the constant k so that the changed system of equations has no solution.

Solution

System is now : $x+y+z=4$
$3 x-y+z=8$

$$
\begin{equation*}
2 x-y+k z=0 \tag{2}
\end{equation*}
$$

Consider $(1)+(2): \quad 4 x+2 z=12$
$(2)-(3): x+(1-k) z=8$
From (5): $x=8-(1-k) z \quad$ substituting into (4): $4(8-(1-k) z)+2 z=12$
i.e. $4 k z-2 z=-20$
i.e. $z(4 k-2)=-20$

Hence for there to be no solution we require $4 k-2=0$
i.e. $k=\frac{1}{2}$

Specific behaviours

\checkmark eliminates two variables to express z correctly (or another variable) in terms of k
\checkmark states that the variable coefficient must be ZERO for no solution
\checkmark determines the value of k

Question 7

Points A, B have respective position vectors $\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}0 \\ -2 \\ 5\end{array}\right)$.
(a) Determine the vector equation for the sphere that has $\overline{A B}$ as its diameter.
(3 marks)

Centre point $C=\frac{1}{2}\left(\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)+\left(\begin{array}{c}0 \\ -2 \\ 5\end{array}\right)\right)=\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$
Radius $r=\|\overrightarrow{A C}\|=\left\|\left(\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right)\right\|=\sqrt{2^{2}+1^{2}+1^{2}}=\sqrt{6}$
Equation for circle with diameter $\overline{A B}: \left.\left\|\underset{\sim}{r}-\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)\right\| \right\rvert\,=\sqrt{6}$
Specific behaviours
\checkmark determines the position vector for the centre correctly \checkmark determines the radius correctly \checkmark forms the vector equation for the sphere correctly

If point O is the origin, consider the plane that contains the vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$.
(b) Determine the vector equation for this plane in the form $\underset{\sim}{r} \cdot \underset{\sim}{n}=c$.

Solution

Use $\underset{\sim}{n}=\overrightarrow{O A} \times \overrightarrow{O B}=\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right) \times\left(\begin{array}{c}0 \\ -2 \\ 5\end{array}\right)=\left(\begin{array}{l}0(5)-(-2)(3) \\ 0(3)-4(5) \\ 4(-2)-0(0)\end{array}\right)=\left(\begin{array}{c}6 \\ -20 \\ -8\end{array}\right)$ or $\left(\begin{array}{c}3 k \\ -10 k \\ -4 k\end{array}\right)$
Since $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \in$ plane, then $c=0$ i.e. equation of plane is $\underset{\sim}{r} \cdot\left(\begin{array}{c}6 \\ -20 \\ -8\end{array}\right)=0$

Specific behaviours

\checkmark uses the idea of the cross product of $\overrightarrow{O A}$ and $\overrightarrow{O B}$ to determine the normal
\checkmark determines the cross product correctly
\checkmark states that the constant $c=0$
\checkmark forms the vector equation for the plane correctly

or

Alternative Solution

Let $\underset{\sim}{n}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \quad$ Hence $\overrightarrow{O A} \cdot \underset{\sim}{n}=0$ i.e. $4 a+3 c=0$
Also $\overrightarrow{O B} \cdot \underset{\sim}{n}=0$ i.e. $-2 b+5 c=0$
Choose $a=-3, b=10, c=-4$
Since $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \in$ Plane, then $c=0 \quad$ i.e. equation of plane is $\underset{\sim}{r} \cdot\left(\begin{array}{c}6 \\ -20 \\ -8\end{array}\right)=0$

Specific behaviours

\checkmark uses the idea that the dot product with the normal vector must be ZERO
\checkmark determines the normal vector from the dot product equations
\checkmark states that the constant $c=0$
\checkmark forms the vector equation for the plane correctly

Question 8

The graph of $f(x)=(x-1)^{2}-4$ is shown below.

(a) Sketch the graph of $y=\frac{1}{f(x)}$ on the coordinate axes below.

Solution

Indicated on the graph above.

Specific behaviours

\checkmark indicates vertical asymptotes at $x=-1$ and $x=3$
\checkmark indicates $y \rightarrow 0^{+}$for $|x| \rightarrow \infty$
\checkmark indicates a local maximum at $x=1$
\checkmark indicates the correct curvature and behaviour around $x=-1$ and $x=3$
(b) Sketch the graph of $y=f(|x|)$ on the coordinate axes below.

Solution
Indicated on the graph above. \quad Specific behaviours
\checkmark indicates the point $(-3,0)$ on the graph
\checkmark indicates symmetry about $x=0$

(c) The domain of function f is restricted to $x \leq k$ so that $y=f^{-1}(x)$ is a function. If this restricted domain represents the largest possible domain, state the value for the constant k. Explain.

Solution

Restrict the domain of f to $\{x \mid x \leq 1\}$ i.e. $k=1$
This is chosen so that function f is a one-to-one function OR function f will be strictly decreasing (or stationary) and not decreasing and then increasing.

Specific behaviours
\checkmark states the correct domain or states the value for k
\checkmark provides an adequate explanation that f will be one-to-one
(d) Using the restriction $x \leq k$, determine the defining rule for $y=f^{-1}(x)$. Also state the domain for $y=f^{-1}(x)$.

Solution

$f: y=(x-1)^{2}-4$	$\therefore f^{-1}: x=(y-1)^{2}-4$
	i.e. $x+4=(y-1)^{2}$
	i.e. $y-1=-\sqrt{x+4} \quad$ since $R_{f^{-1}}=D_{f}$
	$\therefore f^{-1}(x)=1-\sqrt{x+4} \quad, \quad x \geq-4$ since $R_{f}=D_{f^{-1}}$

Specific behaviours

\checkmark interchanges x, y to write the rule for the inverse
\checkmark obtains the correct defining rule for $y=f^{-1}(x)$
\checkmark states the correct domain for $y=f^{-1}(x)$

End of questions

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence.

Published by the School Curriculum and Standards Authority of Western Australia

[^0]: Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

