MATHEMATICS APPLICATIONS

Calculator-free

ATAR course examination 2019

Marking key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section One: Calculator-free

Question 1

(a) Why is the graph planar?

	Solution
No two edges cross	Specific behaviours
\checkmark states correct reason	

(b) Show that the graph satisfies Euler's formula.

Solution
$v=3, e=4, f=3.3+3-4=2$, verified.
Specific behaviours
\checkmark gives correct values for the number of vertices, edges and faces
\checkmark correctly verifies Euler's formula

(c) Construct the adjacency matrix for the graph.

	Solution
A	B
A	C
B	1

A student wishes to carry out closed walks of length two from Building A.
(d) List all his possible walks.

	Solution
A-B-A	
A-C-A	
A-A-A	
A total of 3 walks	
\checkmark lists at least two walks	
\checkmark lists all 3 walks	

Question 2

Katie is a hobby farmer who has been experimenting with a species of tomato plant growing under the same soil and climatic conditions. She varied the amount of water (W), in millimetres, used during each week and recorded the total number of tomatoes (T) produced by each plant. The scatterplot showing her results is drawn below.
(a) Identify the response variable.

	Solution
Number of tomatoes	
	Specific behaviours
\checkmark identifies correct variable	

(b) Use the equation of the least-squares line to predict the total number of tomatoes produced when 10 millimetres of water are given to a plant during each week. (2 marks)

$T=10.55 \times 10+119.11$	
$T=105.5+119.11$	
$T=224.61 \approx 224 / 225$	
Solution	
\checkmark correctly substitutes 10 into least-squares line	
\checkmark rounds correctly to a whole number of tomatoes	

Question 2 (continued)

(c) Fit the least-squares line to the scatterplot.

Katie decided to draw a residual plot to gather more information about her results.
(d) (i) Sketch a residual plot she would have likely drawn for the given data. Note: you do not have to calculate actual values.

(ii) Use your residual plot to discuss the appropriateness of fitting a linear model to the data.
(2 marks)

Solution

A linear model is not appropriate as a pattern is evident in the residual plot. Specific behaviours
\checkmark states linear model is not appropriate
\checkmark states a valid reason

Question 3

A company has four small workshops that each produce four different types of outdoor furniture. The annual cost of production of the furniture at each workshop is shown in the table below, with all values in thousands of dollars.

	Type 1 $\mathbf{\$ \prime}$	Type 2 $\mathbf{\$ \prime}$	Type 3 3 $\mathbf{\$ \prime}$	Type 4 $\mathbf{\$ \prime} 000$
Workshop A	25	43	50	39
Workshop B	33	31	56	39
Workshop C	28	47	59	38
Workshop D	36	32	56	41

The cost matrix is given by
$\left[\begin{array}{llll}25 & 43 & 50 & 39 \\ 33 & 31 & 56 & 39 \\ 28 & 47 & 59 & 38 \\ 36 & 32 & 56 & 41\end{array}\right]$

The company is interested in knowing what the minimum annual cost would be if each furniture type was allocated to its own individual workshop. The Hungarian Algorithm is to be used to determine the allocation and the minimum annual cost. The first step of the Hungarian Algorithm, where the smallest number in each row is subtracted from all other numbers in that row, is shown below.
(a) Continue the steps of the Hungarian Algorithm to determine the appropriate allocation of workshops to furniture type and state the minimum annual cost.
(5 marks)

$$
\left[\begin{array}{cccc}
0 & 18 & 25 & 14 \\
2 & 0 & 25 & 8 \\
0 & 19 & 31 & 10 \\
4 & 0 & 24 & 9
\end{array}\right]
$$

Therefore, the allocation matrix is
$\left[\begin{array}{cccc}0 & 17 & 0 & 5 \\ 3 & 0 & 1 & 0 \\ 0 & 18 & 6 & 1 \\ 5 & 0 & 0 & 1\end{array}\right]$

Type	Type 1	Type 2	Type 3	Type 4
Workshop	C	D	A	B

Total minimum annual cost is $\$ 149000$

Specific behaviours

\checkmark subtracts smallest number in each column from other numbers in that column
\checkmark correctly makes adjustments to matrix
\checkmark correctly allocates workshops
\checkmark states the sum of the allocations correctly
\checkmark states minimum annual cost in thousands of dollars

Question 3 (continued)

The revenue matrix, in thousands of dollars, for the sale of the furniture produced annually at each workshop is given by
$\left[\begin{array}{cccc}37 & 61 & 60 & 53 \\ 45 & 52 & 73 & 50 \\ 38 & 65 & 75 & 55 \\ 44 & 54 & 76 & 45\end{array}\right]$
(b) Given that Profit $=$ Revenue - Cost, complete the Profit matrix below.

			Solution
$\left[\begin{array}{llll}12 & 18 & 10 & 14 \\ 12 & 21 & 17 & 11 \\ 10 & 18 & \boxed{16} & \boxed{17} \\ 8 & 22 & 20 & 4\end{array}\right]$			
correctly completes all entries			

(c) Use the Hungarian Algorithm to determine the appropriate allocation of workshops to furniture type that will produce the maximum annual profit.

Question 4

A marine park has attractions with paths connecting them. The vertices on the graph represent the attractions and the numbers on the edges represent the path distances (km) between the attractions. Visitors can either walk around the park or take one of the many shuttle buses that run between attractions.

The manager of the marine park leaves his office, which is located at the entrance/exit (E) and walks to attraction V.
(a) (i) Determine the shortest distance from E to V .

1.4 km Solution
\checkmark correctly determines shortest distance

(ii) If the manager needs to pick up some tools left at U on the way, determine the route he should take and the corresponding distance, given he wants to take the shortest route from E to V.
(2 marks)

Solution			
ETUTSV			
Total $=2 \mathrm{~km}$			
correctly states shortest route			
\checkmark			
\checkmark correctly determines shortest distance			

Rachel arrives at the entrance. She wants to complete a Hamiltonian cycle.
(b) State the route she should take.

Solution
EPQRSVUTE \quad Specific behaviours
\checkmark states a path containing all vertices
\checkmark states the correct Hamiltonian cycle (starting and finishing at the entrance/exit)

(c) (i) Use Prim's algorithm, or otherwise, to determine the minimum total length of pipelines. Highlight the required pipelines on the diagram below.

Solution	
$\mathrm{EP}(0.4), \mathrm{PQ}(0.3), \mathrm{QR}(0.2), \mathrm{RS}(0.4), \mathrm{VS}(0.5), \mathrm{ST}(0.2), \mathrm{UT}(0.3)$	
The minimum length is 2.3 km.	
Specific behaviours	
\checkmark gives at least 4 correct connections	
\checkmark gives all correct connections	
\checkmark correctly states minimum length	

Solution

(ii) The manager has been told that a pipeline of length 0.2 km could be laid from S to U. How, if at all, will this affect the total length of pipelines that should be laid in order to maintain a minimum length?
(2 marks)

Solution

The minimum length will decrease by 0.1 km (as SU would be used instead of TU).

Specific behaviours

```
    states it is a decrease
\checkmark \text { gives the decrease as 0.1 km}
```


Question 5

The network below represents a construction project. The number on each edge gives the time, in hours, to complete the activity. Each activity requires one worker.

(a) Complete the precedence table below.

Activity	A	B	C	D	E	F	G	H	J	K	L	M	N
Time (hours)	8	9	9	7	11	5	11	2	10	10	6	7	9
Immediate predecessor	-	-	-	A	C	A	C	B,D,E	F	G	H,J	N,K	H

Solution	
See table above \quad Specific behaviours	
correctly allocates predecessors for activity L	
\checkmark correctly allocates all predecessors	

(b) Complete the network showing the earliest starting time (EST) and latest starting time (LST) for each node. (Note: the first node indicates which is the EST and the LST.)
(2 marks)

(c) Determine the critical path and the minimum completion time for the project. (2 marks)

Solution	
Critical path is CEHNM. Minimum completion time is 38 hours	
Specific behaviours	
\checkmark states correct path	
\checkmark states correct time	

(d) Calculate the float times for Activities D and F.

	Solution	
Float time for D is 5 hours		
Float time for F is 9 hours	Specific behaviours	
\checkmark gives correct float for D		
\checkmark gives correct float for F		

Question 5 (continued)

(e) Given that the sum of all the times of the activities is 104 hours, calculate the minimum number of workers required to complete the project in the minimum completion time.
(1 mark)

three \quad Solution
Specific behaviours
\checkmark states correct number of workers required

(f) What is the latest time into the project that Activity F could start without affecting the minimum completion time?
(1 mark)

	Solution
Seventeen hours	Specific behaviours

(g) Explain the purpose of the dotted line on the network.

Solution
Activity L depends on activities H and J
\checkmark Specific behaviours
\checkmark states correct purpose

Question 6

The population of turtles in an artificial lake at a wildlife sanctuary is initially 32 and research has shown a natural decrease in population of 50% each year. Twenty extra turtles are introduced to the lake at the end of each year.
(a) Determine a recursive rule for the turtle population.

	Solution
$T_{n+1}=0.5 T_{n}+20, T_{1}=32$	
	Specific behaviours
\checkmark states correct rule	
\checkmark states correct first term	

(b) Determine the long-term steady state of the turtle population.

| T_{2} |
| :--- |$=0.5(32)+20 \quad$ Solution 1

OR

Solution 2
$x=0.5 x+20$
$0.5 x=20$
$x=40$
correctly writes steady state equation
\checkmark correctly determines the long-term steady state

Question 6 (continued)

(c) If the wildlife sanctuary preferred a long-term steady state of 80 turtles, what yearly addition of turtles would be required to produce this steady state? Assume all other conditions remain the same.

Solution 1

By trial and error.
Example: if $k=30, T_{2}=46, T_{3}=53, T_{4}=56.5$, not approaching 80
Example: if $k=40, T_{2}=56, T_{3}=68, T_{4}=74, T_{5}=77$, approaching 80

Specific behaviours

\checkmark uses trial and error to correctly generate a sequence of at least 4 terms
\checkmark correctly determines the yearly addition of turtles

OR

Solution 2
$80=0.5 \times 80+k$
$80=40+k$
$k=40$
correctly writes steady state equation
\checkmark correctly determines the yearly addition of turtles

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

Published by the School Curriculum and Standards Authority of Western Australia
 303 Sevenoaks Street CANNINGTON WA 6107

