PHYSICS ATAR COURSE YEAR 12

FORMULAE AND DATA BOOKLET

2023

Note: the variable t refers to the 'time taken', sometimes referred to as the 'change in time' or Δt.
Gravity and motion

Average velocity
$v_{\mathrm{av}}=\frac{s}{t}$
Equations of motion
$v=u+a t$
$s=u t+1 / 2 a t^{2}$
$v^{2}=u^{2}+2 a s$
$p=m v$

Force
$F_{\text {net }}=m a$

Weight force
$F_{\text {weight }}=m g$

Kinetic energy
$E_{k}=1 / 2 m v^{2}$

Gravitational potential energy
$E_{p}=m g \Delta h$

Work done
$W=F s \quad W=\Delta E$
Equations of circular motion $\quad v=\frac{2 \pi r}{T} \quad a_{\mathrm{c}}=\frac{v^{2}}{r} \quad$ resultant $F_{\mathrm{c}}=m a_{\mathrm{c}}=\frac{m v^{2}}{r}$

Newton's law of universal
gravitation
$F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$

Kepler's 3rd law
$\frac{T^{2}}{r^{3}}=\frac{4 \pi^{2}}{G M}$
Gravitational field strength
$g=\frac{F_{\mathrm{g}}}{m}=G \frac{M}{r^{2}}$
Moment of a force
$\tau=r F \sin \theta$
where $\theta=$ angle between the force F and the lever arm

Wave particle duality and the quantum theory

Wave period	$T=\frac{1}{f}$
Wave equation	$c=f \lambda$
Energy of photon	$E=h f \quad E=\frac{h c}{\lambda}$
Energy transitions	$\Delta E=h f \quad \Delta E=E_{2}-E_{1}$
Photoelectric effect	$E_{\mathrm{k}}=h f-W$
de Broglie wavelength	$\lambda=\frac{h}{p}$

Coulomb's law

Electric field strength

Magnetic flux density

Magnetic force on a charged particle

Magnetic force on a current-carrying conductor

Particle motion in a magnetic field

Torque on a coil

Magnetic flux

Electromagnetic induction
$F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$
$E=\frac{F}{q}=\frac{V}{d}$
$B=\frac{\mu_{0}}{2 \pi} \frac{I}{r}$
$F=q v B \sin \theta \begin{aligned} & \text { where } \theta=\text { angle between the field } B \text { and the } \\ & \text { velocity } v\end{aligned}$ where $\theta=$ angle between the field B and the
conductor length ℓ $F=I \ell B \sin \theta \quad \begin{aligned} & \text { whenductor length } \ell \\ & \text { con }\end{aligned}$
$r=\frac{m v}{q B}$
$\tau=r F \sin \theta$
where $\theta=$ angle between the force F and the lever arm
$\Phi=B A_{\perp} \quad$ where $A=$ area perpendicular to the field B
induced emf: $\varepsilon=\ell v B \sin \theta$
where $\theta=$ angle between the field B and the conductor length ℓ
induced emf: $\varepsilon=-N \frac{\left(\Phi_{2}-\Phi_{1}\right)}{t}=-N \frac{\Delta \Phi}{t}=-N \frac{\Delta\left(B A_{\perp}\right)}{t}$
where $A=$ area perpendicular to the field B

$$
\varepsilon_{\max }=2 N \ell v B=2 \pi N B A f \quad \varepsilon_{\mathrm{rms}}=\frac{\varepsilon_{\max }}{\sqrt{2}}
$$

Ohm's law
$V=I R$

Electric current
$I=\frac{q}{t}$
Work and energy $W=V q$

Ideal transformer turns ratio
$\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}$
Power

$$
P=V I=I^{2} R=\frac{V^{2}}{R}
$$

Special relativity
Relativistic effects

$$
\begin{array}{lr}
\ell=\ell_{0} \sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)} & t=\frac{t_{0}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}} \\
u=\frac{v+u^{\prime}}{1+\frac{v u^{\prime}}{c^{2}}} & u^{\prime}=\frac{u-v}{1-\frac{u v}{c^{2}}}
\end{array}
$$

Relativistic momentum
$p_{\mathrm{v}}=\frac{m v}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}} \quad$ Hubble's law $\quad v=H_{0} d$
Mass-energy equivalence $\quad E_{\mathrm{t}}=\frac{m c^{2}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}} \quad$ Total energy $\quad E_{\mathrm{t}}=E_{\mathrm{k}}+E_{\text {rest }}$

The Standard Model

Elementary particles

Electromagnetic spectrum

Note: shaded areas represent regions of overlap.

Mean acceleration due to gravity on the Earth ..g	$=9.80 \mathrm{~m} \mathrm{~s}^{-2}$
Mean acceleration due to gravity on the Moon.. $g_{\text {M }}$	$=1.62 \mathrm{~m} \mathrm{~s}^{-2}$
Mean radius of the Earth R_{E}	$=6.37 \times 10^{6} \mathrm{~m}$
Mass of the Earth ... M_{E}	$=5.97 \times 10^{24} \mathrm{~kg}$
Mean radius of the Sun $R_{\text {S }}$	$=6.96 \times 10^{8} \mathrm{~m}$
Mass of the Sun... $M_{\text {S }}$	$=1.99 \times 10^{30} \mathrm{~kg}$
Mean radius of the Moon.............................. $R_{\text {M }}$	$=1.74 \times 10^{6} \mathrm{~m}$
Mass of the Moon.. M_{M}	$=7.35 \times 10^{22} \mathrm{~kg}$
Mean Earth-Moon distance	$3.84 \times 10^{8} \mathrm{~m}$
Mean Earth-Sun distance.	$=1.50 \times 10^{11} \mathrm{~m}$
	$=1.00$ astronomical unit (AU)
Mass (at rest) of electron $m_{\text {e }}$	$=9.11 \times 10^{-31} \mathrm{~kg}$
Mass (at rest) of proton $m_{\text {p }}$	$=1.67 \times 10^{-27} \mathrm{~kg}$
Tonne.. 1.00 t	$=10^{3} \mathrm{~kg}$

Physical constants

Speed of light in vacuum or air.......................c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Electron charge ...e	$=-1.60 \times 10^{-19} \mathrm{C}$
Planck constant ... h	$=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Newtonian constant of gravitation G	$=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Electric constant.. ε_{0}	$=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
Magnetic constant μ_{0}	$=4 \pi \times 10^{-7} \mathrm{NA}^{-2}=1.26 \times 10^{-6} \mathrm{NA}^{-2}$

Conversions

Prefixes of the metric system

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10^{12}	tera	T	10^{-3}	milli	m
10^{9}	giga	G	10^{-6}	micro	$\mathrm{\mu}$
10^{6}	mega	M	10^{-9}	nano	n
10^{3}	kilo	k	10^{-12}	pico	p

Mathematical expressions

Quadratic equations

Given $a x^{2}+b x+c=0, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Triangles

The following expressions apply to the triangle ABC as shown:

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a=\sqrt{b^{2}+c^{2}-2 b c \cos A}
\end{aligned}
$$

ACKNOWLEDGEMENTS

$\begin{array}{ll}\text { Elementary } & \text { Adapted from Standard Model image: MissMJ. (2006). File:Standard Model of } \\ \text { particles } & \text { Elementary Particles.svg. Retrieved June, 2016, from } \\ & \text { https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_ } \\ & \text { Particles.svg } \\ & \text { Used under Creative Commons Attribution 3.0 Unported licence. }\end{array}$

Copyright

© School Curriculum and Standards Authority, 2022
This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority (the Authority) is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

An Acknowledgements variation document is available on the Authority website.
This document is valid for teaching and examining until 31 December 2023

$$
\begin{aligned}
& \text { Published by the School Curriculum and Standards Authority of Western Australia } \\
& 303 \text { Sevenoaks Street } \\
& \text { CANNINGTON WA } 6107
\end{aligned}
$$

