MATHEMATICS APPLICATIONS

Calculator-free

ATAR course examination 2017

Marking Key

> Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Question 1

Consider the following recurrence relation:

$$
T_{n+1}=T_{n}-3, \quad T_{3}=2 .
$$

(a) Display the first six terms of this sequence on the axes below. Label the axes clearly.

Solution						

(b) (i) Deduce a rule for the $n^{\text {th }}$ term of this sequence.

Solution
$T_{n}=-3 n+11 \quad$ Specific behaviours
identifies gradient of -3 and vertical intercept of 11 \checkmark uses correct variables, n and $T_{n}$${ }^{2}$

(ii) Hence, determine the first term in the sequence which is less than -500 .
(3 marks)

\quad Solution	
$-500=-3 n+11$	
$3 n=511$	
$n=170.33$	
$\therefore 171$ st term	
$\mathrm{T}_{171}=-3 \times 171+11=-502 \quad$	
Specific behaviours	
\checkmark solves the equation: $-500=-3 n+11$	
\checkmark determines correct term number, i.e. 171 st term	
\checkmark determines correct term	

A supermarket provides a delivery service to its customers. This morning, there are four deliveries (1, 2, 3 and 4) to be made. Each of four drivers, John, Kerry, Liam and Max, is available to do one of the deliveries.

The table below shows the time, in minutes, that each driver would take to complete each of the four deliveries.

Table 1
Delivery Driver

Deliveries	1	John	Kerry	Liam	Max
		35	31	41	36
	2	25	26	33	36
	3	32	28	25	24
	4	27	30	31	28

The store manager will allocate the deliveries so that the total delivery time is at a minimum. He decides to use the Hungarian algorithm to determine the allocation of deliveries to the drivers.

His first step is to subtract the minimum entry in each row from each element, ensuring that each row contains at least one zero.

Table 2
Delivery Driver

Deliveries	John					
	Kerry				Liam	
	1	4	0	10	5	
	2	0	1		11	
	3	8	4	1	0	
	4	0	3	4	1	

(a) What is the number missing from the shaded cell?

8
8
\checkmark correctly determines missing number

The second step is to ensure that all columns contain at least one zero. The numbers that result from this step are shown in the table below.

Table 3
Delivery Driver

Deliveries	1	John	Kerry	Liam	Max
		4	0	9	5
	2	0	1	7	11
	3	8	4	0	0
	4	0	3	3	1

(b) The smallest number of horizontal and vertical lines that can be drawn to cover all the zeros is three.
(i) Draw in these lines on Table 3 on the previous page.

Solution					
Deliveries	1	Delivery Driver			
		John	Kerry	Liam	Max
		4	0	9	5
		¢	1	7	11
	3	--- ${ }^{\text {¢ }}$	--4-	--0---	--0----
	4	0	3	3	1
Specific behaviours					
\checkmark correctly draws in three lines covering all the zeros					

(ii) State why an allocation of delivery drivers cannot be made yet.

Solution
The number of lines (three) is not the same as the number of drivers and tasks (four).
\checkmark correctly states the reason

Question 2 (continued)

(c) Continue the steps of the Hungarian algorithm to determine the optimum allocation of deliveries to the drivers. Complete the table at the bottom of the page and state the minimum total delivery time.

Solution					
	Delivery Driver				
		John	Kerry	Liam	Max
	1	5	1	9	5
Deliveries	2	1	2	7	11
	3	10	6	1	1
	4	1	4	3	1
			Delive	Driver	
		John	Kerry	Liam	Max
	1	4	0	8	4
Deliveries	2	0	1	6	10
	3	9	5	0	0
	4	0	3	2	0
Delivery Driver		John	Kerry	Liam	Max
Delivery		2	1	3	4
Minimum total delivery time $=109$ minutes					
Specific behaviours					
\checkmark adds 1 to all covered numbers and 2 to all numbers at intersections					
\checkmark subtracts 1 from every element					
\checkmark adds 1 to all numbers at intersection					
\checkmark subtracts 1 from all uncovered numbers					
\checkmark states correct allocation					

Question 3

(a) A planar graph has five faces and five vertices, A, B, C, D and E.
(i) Determine the number of edges for this graph.

Solution
$5+5-e=2$ $e=8$
Specific behaviours
\checkmark applies Euler's rule correctly
\checkmark correctly solves for e

(ii) Draw the planar graph in the space below.

(iii) Determine a Hamiltonian cycle for the graph, giving your answer as a sequence of vertices.
(1 mark)

Solution
DECABD There are other possibilities
Specific behaviours
\checkmark correctly states a Hamiltonian cycle

(iv) Is the graph Eulerian, semi-Eulerian or neither? Justify your answer. (2 marks)

Solution
The graph is semi-Eulerian as it contains exactly two odd vertices
Specific behaviours
\checkmark correctly states the graph is semi-Eulerian
\checkmark correctly justifies the answer

Question 3 (continued)

(b) (i) A simple connected graph contains five vertices. Determine the minimum and the maximum number of edges it contains.

Solution
Minimum $=4 \quad$ Maximum $=10$
Specific behaviours
\checkmark states correct minimum value
\checkmark states correct maximum value

(ii) A simple connected graph contains n vertices. Determine the minimum number of edges it contains.

Minimum $=n-1 \quad$ Solution
\checkmark specific behaviours

(iii) What name is given to the simple connected graph with the maximum number of edges possible?

Solution	
Complete \quad Specific behaviours	
\checkmark states correct name	

Question 4

Ryan was keen to compare interest rates offered by different banks, so he decided to construct a table showing the effective annual rates of interest (\%). Part of his table is shown below.

	Rate of interest (p.a.)				
Compounding period	$\mathbf{4 \%}$	$\mathbf{4 . 5 \%}$	$\mathbf{5 \%}$	$\mathbf{5 . 5 \%}$	$\mathbf{6 \%}$
Quarterly	4.060	4.577	5.095	5.614	6.136
Monthly	4.074	4.594	5.116	5.641	6.168
Daily	4.081	4.602	5.127	5.654	6.183

(a) Ryan wants to borrow $\$ 5000$ to purchase a second-hand car. A bank offers to lend him the money at the rate of 6% p.a. for one year. He plans to pay off the entire loan (including the interest) at the end of the year. Which compounding period should he sign up for? Justify your decision.
(2 marks)

Solution
Quarterly
As the effective rate of interest is the lowest, he will pay less interest
Specific behaviours
\checkmark states correct compounding period
\checkmark states valid reason

(b) Ryan is curious to know how much interest he would earn by investing $\$ 100$ for a year, earning 4% p.a. with interest compounded quarterly. Determine the interest he would earn.

Solution	
$\$ 4.06$	Specific behaviours
\checkmark states correct amount	

(c) Ryan's sister has $\$ 3000$ to invest for a year. She has been offered a rate of 5% p.a., with interest compounded daily. Determine the value of her investment at the end of the year.
(2 marks)

$3000 \div 100=30$	
$30 \times 5.127=153.81$	
\therefore Value $=\$ 3153.81$	
Solution	
\checkmark calculates interest	
\checkmark determines correct value of investment	

Question 5

A group of university students was asked the question 'Does full attendance at school lead to an improved examination result?'

The results are summarised below.

	Agree	Disagree	Undecided
Male under 20 years	8	22	6
Female under 20 years	6	20	8
Male 20 to 25 years	26	7	3
Female 20 to 25 years	30	9	5
Male over 25 years	24	3	2
Female over 25 years	18	2	1

(a) Complete the two-way table below.

	Agree	Disagree	Undecided
Under 20	14	42	14
$20-25$	56	16	8
Over 25	42	5	3

See table above \quad Solution
\quad Specific behaviours
\checkmark completes at least 3 correct entries
\checkmark completes all correct entries

(b) State the explanatory variable for these data.

	Solution
Age	Specific behaviours
\checkmark states correct variable	

(c) The incomplete table below shows row percentages.

	Percentages		
	Agree	Disagree	Undecided
Under 20	20	60	20
$20-25$	70	20	10
Over 25	84	10	6

(i) Show how the value of 20% was calculated. (2 marks)

Solution
$\frac{16}{80} \times 100=20 \% \quad$ Specific behaviours
\checkmark shows correct numerator
\checkmark shows correct denominator and calculates the 20%

(ii) Complete the table.

Solution
See above table \quad Specific behaviours
correctly calculates at least 3 percentages
\checkmark correctly calculates all percentages

(d) Use the data to determine one association between the variables. Describe the association and explain your reasoning.

Solution

As age increases the percentage of students who agree increases. Percentages in the Agree column are increasing with age. There are other possibilities.

Specific behaviours

\checkmark correctly states an association
\checkmark gives reasoning

Question 6

(a) In the network below, the nodes represent towns and the numbers on the arcs represent the time taken (in minutes) to travel between them.

A driver leaves Town A and must deliver goods to all the other towns in the shortest time, finishing at Town B. Determine this shortest time. (A town may be visited more than once).

AQSPSRTUB Time $=360$ minutes Solution
Specific behaviours
\checkmark lists a route which visits all towns
\checkmark lists the shortest route
\checkmark states the shortest time taken

(b) The network below shows the distances (in metres) between stations for a model railway track system.

(i) Determine the minimal spanning tree for the network and draw this tree on the diagram below.

Solution
See graph above \quad Specific behaviours
\checkmark draws a tree 3 correct edges
\checkmark draws at least
\checkmark draws all correct edges

(ii) State the length of the minimal spanning tree.

	Solution
17 metres	Specific behaviours
\checkmark states correct length	

Question 7

(a) The graph below shows the paths connecting the exhibits at a zoo.

(i) Explain why the graph is not semi-Eulerian.

The graph has more than two odd vertices
\quad Specific behaviours
\checkmark states correct reason

(ii) Draw one edge on the graph so that it becomes semi-Eulerian and does not contain a bridge.

Solution			
See above graph (dotted line) Specific behaviours			
\checkmark draws an edge to make graph semi-Eulerian			
\checkmark draws an edge to make graph semi-Eulerian and does not contain a bridge			

(b) The adjacency matrix Q represents the raised paths connecting the observation platforms in the safari section at the zoo. Draw a planar graph for the adjacency matrix.
(3 marks)

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

Published by the School Curriculum and Standards Authority of Western Australia

