MATHEMATICS METHODS

Calculator-free

ATAR course examination 2018

Ratified Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

MATHEMATICS METHODS

Section One: Calculator-free

35\% (52 Marks)

Question 1

A bag contains 1 red marble and 4 green marbles. A single marble is drawn from the bag. The random variable Y is defined as the number of green marbles drawn from the bag.
(a) Complete the probability distribution for Y shown below.

y	0	1
$\mathrm{P}(Y=y)$	$\frac{1}{5}$	$\frac{4}{5}$

Solution
See table \quad Specific behaviours
\checkmark completes first probability correctly
\checkmark completes second probability correctly

(b) State the distribution of Y.
(1 marks)

	Solution
It is a Bernoulli distribution. \quad Specific behaviours	
\quad	
\checkmark states the distribution name	

(c) Determine the mean and standard deviation of the distribution.

Solution	
$\mu=\frac{4}{5}$	
$\sigma=\sqrt{\frac{1}{5} \times \frac{4}{5}}=\frac{2}{5}$	
\quad Specific behaviours	
\checkmark states the mean	
\checkmark	

The above process is repeated five times, with the marble being replaced every time. The random variable X is defined as the number of green marbles drawn from the bag in five attempts.
(d) State the distribution of X, including its parameters.

$X \sim \operatorname{BIN}\left(5, \frac{4}{5}\right) \quad$ Solution
Specific behaviours
\checkmark states the distribution name
\checkmark states the parameters of the distribution

(e) Evaluate the probability of selecting exactly two green marbles.

Solution

$$
\begin{aligned}
P(X=2) & =\binom{5}{2}\left(\frac{4}{5}\right)^{2}\left(\frac{1}{5}\right)^{3} \\
& =\frac{5 \times 4 \times 16}{2 \times 5^{5}} \\
& =\frac{32}{625}
\end{aligned}
$$

Specific behaviours

\checkmark correctly substitutes into binomial formula
\checkmark states simplified probability

Question 2

For a set of data values that are normally distributed, approximately 68% of the values will lie within one standard deviation of the mean, approximately 95% of the values will lie within two standard deviations of the mean and approximately 99.7% of the values will lie within three standard deviations of the mean.

If the heights of a large group of women are normally distributed with a mean $\mu=163 \mathrm{~cm}$ and standard deviation $\sigma=7 \mathrm{~cm}$, use the above information to answer the following questions:
(a) A statistician says that almost all of the women have heights in the range 142 cm to 184 cm . Comment on her statement.
(2 marks)

Solution

Her comment is appropriate as the range corresponds to 3 standard deviations above and below the mean, which equates to approximately 99.7% of the group.

Specific behaviours

\checkmark states that the comment is appropriate
\checkmark refers to the standard deviation and 99.7\%
(b) Approximately what percentage of women in the group has a height greater than 170 cm ?

$170-163$ $=7 \Rightarrow 1 \mathrm{SD}$ above Percentage $=\frac{100-68}{2}$ $=16$ \quad Specific behaviours \checkmark states 1 standard deviation above

(c) Approximately 2.5% of the women are shorter than what height?

Question 3

(a) Differentiate $\left(2 x^{3}+1\right)^{5}$.

$\frac{d}{d x}\left(2 x^{3}+1\right)^{5}$ $=5 \times\left(6 x^{2}\right)\left(2 x^{3}+1\right)^{4}$ $=30 x^{2}\left(2 x^{3}+1\right)^{4}$ Solution \checkmark demonstrates use of the chain rule be behaviours including the $\left(2 x^{3}+1\right)^{4}$ term \checkmark fully determines derivative correctly

(b) Given $g^{\prime}(x)=e^{2 x} \sin (3 x)$, determine a simplified value for the rate of change of $g^{\prime}(x)$ when $x=\frac{\pi}{2}$.

| $g^{\prime \prime}(x)$ |
| :--- |$=2 e^{2 x} \sin (3 x)+3 e^{2 x} \cos (3 x) \quad$ Solution

Question 3 (continued)

(c) Determine the following:
(i) $\int 3 \cos (2 x) d x$.

$\int 3 \cos (2 x) d x=\frac{3}{2} \sin (2 x)+C$
Solution
\checkmark determines integral including $\sin (2 x)$
\checkmark determines integral fully correct including constant

(ii) $\int_{0}^{1} \frac{3 x+1}{3 x^{2}+2 x+1} d x$.
(3 marks)

| $\int_{0}^{1} \frac{3 x+1}{3 x^{2}+2 x+1} d x$ $=\frac{1}{2} \int_{0}^{1} \frac{6 x+2}{3 x^{2}+2 x+1} d x$
 $=\frac{1}{2}\left[\ln \left(3 x^{2}+2 x+1\right)\right]_{0}^{1}$
 $=\frac{1}{2}[\ln 6-\ln 1]$
 $=\frac{1}{2} \ln 6$ |
| ---: | :--- |

(d) If $f^{\prime}(x)=e^{-2 x}$, find the expression for $y=f(x)$, given $f(0)=-2$.

$y=\int f^{\prime}(x)=\frac{-e^{-2 x}}{2}+c$
at $x=0 \quad y=-2 \quad \therefore c=\frac{-3}{2}$
$y=\frac{-e^{-2 x}}{2}-\frac{3}{2}$
\checkmark correctly integrates $f^{\prime}(x)$ and includes a constant
\checkmark determines the correct value of the constant

Question 4

Ten shop owners in a coastal resort were asked how many extra staff they intended to hire for the next holiday season. Their responses are shown below:
$3,0,2,1,2,1,1,0,2,1$
If $N=$ number of additional staff,
(a) complete the probability distribution of N below.

n	0	1	2	3
$\mathrm{P}(N=n)$	$\frac{2}{10}$	$\frac{4}{10}$	$\frac{3}{10}$	$\frac{1}{10}$

	Solution
See table \quad Specific behaviours	
\checkmark gives one correct entry	
\checkmark completes the table correctly	

(b) what is the mean number of staff the shop owners intend to hire?

$E(X)$ Solution $\left(0 \times \frac{2}{10}\right)+\left(1 \times \frac{4}{10}\right)+\left(2 \times \frac{3}{10}\right)+\left(3 \times \frac{1}{10}\right)$ 10
gives correct expression for $E(X)$
\checkmark simplifies answer

Question 5

A 95\% confidence interval for a population proportion based on a sample size of 200 has width w. What sample size is required to obtain a 95% confidence interval of width $\frac{w}{3}$?

Solution

The width of a confidence interval is inversely proportional to the square root of sample size. Therefore, to have one third the width of the confidence interval requires a sample size nine times as large, so a sample size of 1800 is needed.
or

$$
w=\frac{z \sigma}{\sqrt{n}}
$$

sample size $n_{1}: \frac{w}{3}=\frac{z \sigma}{\sqrt{n_{1}}}$
dividing (1): $\frac{w}{3}=\frac{z \sigma}{3 \sqrt{n}}$
substituting for $\frac{w}{3}$ into (2): $\frac{z \sigma}{3 \sqrt{n}}=\frac{z \sigma}{\sqrt{n_{1}}}$
solving for $n_{1}: n_{1}=9 n=1800$.

Specific behaviours

\checkmark uses the new width as $\frac{w}{3}$
\checkmark states that the sample size is nine times as large
\checkmark gives correct value of sample size
or
\checkmark obtains equation (1) and (2)
\checkmark solves equation
\checkmark obtains correct sample size

Question 6

A company manufactures and sells an item for $\$_{x}$. The profit, $\$ P$, made by the company per item sold is dependent on the selling price and can be modelled by the function:

$$
P(x)=\frac{50 \ln \left(\frac{x}{2}\right)}{x^{2}} \text { where } 1.5 \leq x \leq 10
$$

The graph of $P(x)$ is shown below:

(a) Describe how the profit per item sold varies as the selling price changes.

Solution

The company will make a loss for a selling price between $\$ 1.50$ and $\$ 2.00$. The profit then increases up to approximately $\$ 2.25$ per item sold for a selling price of approximately $\$ 3.25$, and then decreases steadily to a value of less than $\$ 1$ per item sold for a selling price of $\$ 10$.

Specific behaviours

\checkmark states initially making a loss
\checkmark states profit increases to maximum at $\$ 3.25$
\checkmark states it decreases after that

Question 6 (continued)

(b) Determine the exact price that should be charged for the item if the company wishes to maximise the profit per item sold.

$\frac{d P}{d x}$	$=\frac{x^{2}\left(\frac{50}{2} \times \frac{2}{x}\right)-2 x \times 50 \ln \left(\frac{x}{2}\right)}{x^{4}}$
	$=\frac{50 x-100 x \ln \left(\frac{x}{2}\right)}{x^{4}}$
	$=\frac{50-100 \ln \left(\frac{x}{2}\right)}{x^{3}}$
For max, $\frac{d P}{d x}$	$=0 \Rightarrow 0=\frac{50-100 \ln \left(\frac{x}{2}\right)}{x^{3}}$
$\ln \left(\frac{x}{2}\right)$	$=\frac{1}{2}$
x	$=2 e^{\frac{1}{2}}$

Question 7

(a) Determine a simplified expression for $\frac{d}{d x}(x \ln (x))$.

$\frac{d}{d x}(x \ln (x))$ $=x \times \frac{1}{x}+\ln (x)$ Solution $=1+\ln (x)$ \quad Specific behaviours \checkmark uses product rule to determine derivative \checkmark simplifies the derivative

(b) Use your answer from part (a) to show that $\int \ln (x) d x=x \ln (x)-x+c$, where c is a constant.

$\frac{d}{d x}(x \ln (x))=1+\ln (x)$
$\int \frac{d}{d x}(x \ln (x)) d x=\int(1+\ln (x)) d x$
$x \ln (x)=x+\int \ln (x) d x+c$
$\int \ln (x) d x=x \ln (x)-x+c$
Specificion behaviours
\checkmark integrates both sides of answer from part (a) \checkmark \checkmark uses fundamental \checkmark rearranges to give the required result to simplify the left-hand side

Question 7 (continued)

The graphs of the functions $f(x)=5$ and $g(x)=\ln (x)$ are shown below.

(c) Determine the exact area enclosed between the x-axis, the y-axis and the functions $f(x)$ and $g(x)$.

Solution

Intersect when: $\ln (x)=5 \Rightarrow x=e^{5}$
Area under $f(x): \int_{1}^{e^{5}} \ln (x) d x=[x \ln (x)-x]_{1}^{]^{5}}$

$$
=5 e^{5}-e^{5}+1
$$

Required area $=5 \times e^{5}-\left(5 e^{5}-e^{5}+1\right)$
$=e^{5}-1$

Specific behaviours

\checkmark determines point of intersection between $f(x)$ and $g(x)$
\checkmark states an integral for the area under $f(x)$
\checkmark evaluates integral
\checkmark determines required area

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

