MATHEMATICS APPLICATIONS

Calculator-free

ATAR course examination 2016

Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section One: Calculator-free

Question 1

Joe wishes to upgrade his sprinkler system using the least possible length of piping. The weighted graph below shows the existing system. The numbers on the edges indicate the length of each pipe, in metres, between sprinklers A, B, C, D, E, F, G and H.

(a) Complete the table below showing connections between each sprinkler.

	A	B	C	D	E	F	G	H
A	-	8					$\mathbf{6}$	3
B	8	-	$\mathbf{4}$			$\mathbf{3}$	$\mathbf{4}$	
C		$\mathbf{4}$	-	6		$\mathbf{3}$		
D			6	-	$\mathbf{5}$	$\mathbf{4}$		
E				$\mathbf{5}$	-	3		7
F		$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	3	-	$\mathbf{4}$	
G	$\mathbf{6}$	$\mathbf{4}$				$\mathbf{4}$	-	$\mathbf{8}$
H	3				7		$\mathbf{8}$	-

Solution
see table above \quad Specific behaviours
determines approximately 12 or more correct entries
\checkmark determines all 18 correct entries

(b) Show the use of Prim's algorithm to establish a minimum spanning tree for the least length of piping required and draw this tree on the diagram below.

Solution

see table and graph above (table may have alternative solutions)

Specific behaviours

\checkmark determines three or more correct links
\checkmark determines five or more correct links
\checkmark determines seven correct links
\checkmark correctly draws tree
\checkmark attaches correct pipe lengths

Question 2

A project consists of 11 activities, P to Z . The project network representing the scheduling of these activities is shown below. The times are in days.

(a) State the critical path and the minimum completion time for this project.
(2 marks)

Solution
critical path QSXZ
minimum completion time -35 days
Specific behaviours
\checkmark states correct critical path
\checkmark states correct minimum completion time

(b) Determine the:
(i) earliest starting time for activity Y .

	Solution
EST for activity Y is day 22 \quad Specific behaviours	

(ii) latest starting time for activity V .

	Solution
LST for activity V is day 15	
	Specific behaviours
\checkmark states correct time	

(iii) float time for activity U.
(1 mark)

Solution
float time for activity U is nine days
\checkmark Specific behaviours

(c) Activity W is delayed by three days. How, if at all, will this affect the critical path and minimum completion time for this project? A copy of the network is given below.
(2 marks)

Solution

critical path changes to RWY minimum completion time is now 36 days (an extra day)

Specific behaviours
\checkmark states new critical path
\checkmark states new completion time

Question 3

A foreman in a factory has four workers, Adam, Ben, Cate and Demi, and four jobs to complete. The time, in hours, each worker can complete a particular job is given in the weighted bipartite graph below.

(a) Complete the matrix associated with the bipartite graph above.

see matrix above \quad Solution
Specific behaviours
\checkmark completes four or more correct entries
\checkmark completes eight correct entries

(b) Using the Hungarian algorithm, determine which job the foreman should assign to each of his workers so that the total time is minimised.

Question 4

(a) Given the sequence $256,128,64,32, \ldots$
(i) Write a recursive rule for the sequence.

Solution
$T_{n+1}=\frac{1}{2} T_{n}, T_{1}=256 \quad$ Specific behaviours
correctly states recursive rule
\checkmark correctly states first term

(ii) Deduce a rule for the $n^{\text {th }}$ term of this sequence. Hence, calculate the 15th term, leaving your answer as a fraction.
(3 marks)

$T_{n}=256\left(\frac{1}{2}\right)^{n-1}$ Solution		
$T_{15}=256\left(\frac{1}{2}\right)^{15-1}=\frac{1}{64} \quad$ Specific behaviours		
\checkmark correctly states general rule \checkmark correctly substitutes 15 into general rule \checkmark correctly calculates 15		

(b) Use the recursive definitions given to state the first three terms of each of the following sequences.
(i) $\quad T_{n+1}=T_{n}+7, T_{1}=11$

$11,18,25$ Solution
Specific behaviours
\checkmark correctly calculates term 2

(ii) $T_{n+1}=1.5 T_{n}, T_{2}=7.5$

$T_{1}=7.5 \div 1.5=5$
$T_{3}=7.5 \times 1.5=11.25$
Solution
\checkmark correctly calculates term 1
\checkmark correctly calculates term 3

(c) Consider the sequence $12,7,2,-3, \ldots$

By deducing a rule for the $n^{\text {th }}$ term, or otherwise, determine which term of the sequence is -168 .
(3 marks)

Solution

$T_{n}=12+(-5)(n-1)$
$17-5 n=-168$
$5 n=185 \Rightarrow n=37$

Specific behaviours

\checkmark correctly states general term
\checkmark correctly equates to -168
\checkmark correctly states correct term

Question 5

(a) Redraw the following graphs as planar graphs.
(i)

(ii)
(2 marks)

Solution
\checkmark correctly redraws edge AE
\checkmark correctly redraws edge BE

(iii)
(2 marks)

Solution

\[

\]

(c) One of the planar graphs is semi-Eulerian. State which graph it is, giving a reason for your choice.

Solution

graph (ii) is semi-Eulerian since it has exactly two odd vertices Specific behaviours
\checkmark identifies correct graph
\checkmark states correct reason

Question 6

Before a fitness campaign at a high school started, 50 students were chosen at random from each year group and asked the following questions:

Question 1: Which one of the following modes of transport do you use to travel to and from school?

Category A: walking/cycling
Category B: public transport
Category C: private car
Question 2: Which year group are you in?
The campaign organisers wished to determine whether age group affected the students' likelihood of walking/cycling to and from school.

The results of the survey are shown in the table below.

	Category A	Category B	Category C	Total
Year 7	19	$\mathbf{1 1}$	20	50
Year 8	12	17	21	50
Year 9	13	14	23	50
Year 10	11	18	21	50
Year 11	10	15	25	50
Year 12	8	17	25	50
Total	73	$\mathbf{9 2}$	135	300

(a) Complete the missing entries in the table above.

see table above \quad Solution
Specific behaviours
\checkmark calculates two or more correct entries
\checkmark calculates four correct entries

(b) Compare the percentages of students in Year 7 and Year 12 who use Category A as a mode of transport and comment on your results.
(2 marks)

Solution
Year $7: \frac{19}{50}=38 \%$, Year $12: \frac{8}{50}=16 \%$
There is a marked drop between Year 7 and 12 in the percentage of students who use
Category A as a mode of transport to and from school
Specific behaviours
\checkmark calculates the correct percentages
\checkmark states there is a drop between Year 7 and Year 12 students using Category A

The data given in the table for part (a) have been displayed as a divided column graph below.

(c) Using the graph above or another method, comment on:
(i) the association between 'Year group' and 'Category A'.

Solution

Generally as the students get older the percentage of students using Category A as a mode of transport decreases.

Specific behaviours

states correct association between year group and category A
(ii) the association between 'Year group' and 'Category C'.

Solution

Generally as the students get older the percentage of students using Category C as a mode of transport increases.

Specific behaviours

states correct association between year group and category C
(iii) the association between 'Category A' and 'Category B and C combined'. (1 mark)

Solution

There are less students who walk or cycle to and from school than those who use motorised transport.

> or

As category A increases, Category B and C decrease.

Specific behaviours

```
\checkmark states correct association between Category A and Category B and C
    combined
```

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence.

Published by the School Curriculum and Standards Authority of Western Australia

