MATHEMATICS SPECIALIST

Calculator-assumed

ATAR course examination 2017

Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section Two: Calculator-assumed

Question 9

The time T in minutes that a particular flight arrives later than its scheduled time is uniformly distributed with $-30 \leq T \leq 60$. The population mean is $\mu(T)=15$ and the population variance is $\sigma^{2}(T)=675$.

A sample of 30 arrival times is taken and the sample mean \bar{T} is calculated.
(a) Determine $P(10 \leq \bar{T} \leq 20)$ correct to 2 decimal places.

| Solution |
| :--- | :--- |
| T |
| $\bar{T} \sim N\left(15, \frac{675}{30}\right)$ |
| i.e. $\sigma^{2}(\bar{T})=22.5 \quad \sigma(\bar{T})=4.74 \quad(2$ d.p. $)$ |
| $P(10 \leq \bar{T} \leq 20)=0.71 \quad$ (2 d.p.) |
| Specific behaviours |
| \checkmark states that the sample mean is normally distributed
 \checkmark
 \checkmark states the parameters of the sample mean
 \checkmark calculates the correct probability |

(b) If a large number of samples, each with 30 arrival times is taken, sketch the likely distribution of the sample mean \bar{T} below.

In the diagram indicate or refer to the calculation from part (a).

Solution
As above. There is approx. 71\% of the total area under the curve for $10 \leq \bar{T} \leq 20$.
Specific behaviours
\checkmark indicates a normal distribution centred at $\mu(\bar{T})=15$
\checkmark indicates a standard deviation of approx. 5 minutes
\checkmark refers to the probability from part (a)

Question 10

Consider $z=1-i$ shown in the complex plane below.

(a) Express z in polar form.

$z=\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)$
\checkmark solution
Spates the correct polar form (both modulus and argument)

(b) Hence express z^{2}, z^{3} and z^{4} in exact polar form.

$z^{2}=\left(\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^{2}=2 \operatorname{cis}\left(-\frac{\pi}{2}\right)$
$z^{3}=\left(\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^{3}=2 \sqrt{2} \operatorname{cis}\left(-\frac{3 \pi}{4}\right)$
$z^{4}=\left(\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)\right)^{4}=4 \operatorname{cis}(-\pi) \quad$ or $\quad 4 \operatorname{cis}(\pi)$
\checkmark writes the correct modulus for each power \checkmark writes the correct argument for each power

Question 10 (continued)

(c) Sketch the complex numbers z^{2}, z^{3}, z^{4} as vectors in the given Argand diagram.

Solution	
As shown in the Argand diagram Specific behaviours	
\checkmark indicates the correct modulus for each vector \checkmark indicates the correct argument for each vector	

Consider the geometric transformation(s) applied to transform $z \rightarrow z^{2} \rightarrow z^{3} \rightarrow z^{4}$ etc.
(d) Describe the geometric transformation(s) performed by successive multiplication by z .
(2 marks)

Solution
Successive multilplication by z results in the modulus changing by a factor of $\sqrt{2}$ and the argument decreasing by 45°.
Geometric description: \quadEach vector is ENLARGED by a factor of $\sqrt{2}$ Each vector is ROTATED clockwise (about origin) by 45 Specific behaviours
\checkmark describes the change in the modulus as an enlargement by factor $\sqrt{2}$ \checkmark describes the change in the argument as a clockwise rotation by 45°

Question 11

A series of magnets is placed under a glass pane and some iron filings are sprinkled onto the glass. The orientation or slope of the iron filings, as determined by the magnetic field, is shown below. One of the lines of magnetic force that passes through the point $A(0,1)$ is also shown.

The slope field is given by $\frac{d y}{d x}=\frac{1}{2 x-2}, x \neq 1$.
(a) Determine the value of the slope field at the point $A(0,1)$.

Solution

Substitute $x=0$ into $\frac{d y}{d x}=\frac{1}{2(0)-2}=-0.5$
i.e. the slope field has a value of -0.5 at point A

Specific behaviours

\checkmark substitutes $x=0$ into the expression for $\frac{d y}{d x}$
\checkmark evaluates the slope field correctly

Question 11 (continued)
(b) Explain the orientation of the iron filings at $x=1$.

Solution

As $x \rightarrow 1,\left|\frac{d y}{d x}\right| \rightarrow \infty$ hence the orientation becomes infinitely steep i.e. vertical OR that the slope is undefined at $x=1$

Specific behaviours

\checkmark explains appropriately with reference to the very high slope values as $x \rightarrow 1$ OR states that the slope is undefined at $x=1$
(c) Determine the equation for the line of force that passes through the point $A(0,1)$.

From $\frac{d y}{d x}=\frac{1}{2 x-2}$ then $y=\int \frac{1}{2 x-2} d x=\frac{1}{2} \ln \|2 x-2\|+c$
Using $(0,1) 1=\frac{1}{2} \ln \|2(0)-2\|+c$
$\therefore \quad c=1-\frac{1}{2} \ln (2)$
i.e. Equation for the line of force is $y=\frac{1}{2} \ln \|2 x-2\|+\left(1-\frac{1}{2} \ln (2)\right)$
i.e. $y=\frac{1}{2} \ln \|2 x-2\|+0.6534 \ldots$
\quad Specific behaviours
\checkmark anti-differentiates using the natural logarithm of an absolute value \checkmark anti-differentiates correctly using a factor of one-half \checkmark substitutes the coordinates of point A correctly into the anti-derivative function \checkmark determines the constant of integration correctly

Question 12

The diagram shows the curve with equation $\sqrt{x}+\sqrt{y}=3$ where points A, B are the intercepts of this curve. A tangent is drawn to the curve at point $P(1,4)$.

(a) Show that the equation of the tangent is $2 x+y=6$.

Solution

Differentiating implicitly : $\frac{d}{d x}\left(x^{\frac{1}{2}}+y^{\frac{1}{2}}\right)=\frac{d}{d x}(3)$

$$
\begin{aligned}
& \frac{1}{2} x^{-\frac{1}{2}}+\frac{1}{2} y^{-\frac{1}{2}}\left(\frac{d y}{d x}\right)=0 \\
& \frac{d y}{d x}=-\frac{\sqrt{y}}{\sqrt{x}}
\end{aligned}
$$

At $(1,4) \quad m=\frac{d y}{d x}=-\frac{\sqrt{4}}{\sqrt{1}}=-2$
Hence equation of tangent: $y-4=-2(x-1)$
i.e. $y=6-2 x \quad$ OR $\quad 2 x+y=6$

Specific behaviours

\checkmark differentiates correctly
\checkmark determines the slope of the tangent correctly
\checkmark forms the equation of the tangent correctly

Question 12 (continued)

The shaded region is bounded by the curve, the tangent and the x axis.
(b) Determine the exact area of the shaded region.

	Alternative Solution
	x intercept of the tangent at point Q is $(3,0)$. x intercept of the curve at point A is $(9,0)$. Considering vertical rectangles: $\begin{aligned} \text { Area shaded } & =\operatorname{Region}(P R Q)+\operatorname{Region}(R Q A) \\ & =\int_{1}^{3}(3-\sqrt{x})^{2}-(6-2 x) d x+\int_{3}^{9}(3-\sqrt{x})^{2} d x \\ & =1.2153 \ldots+2.7846 \ldots \\ & =4 \text { square units } \end{aligned}$
	Specific behaviours
	\checkmark determines the coordinates for A, Q correctly \checkmark forms two integrals with the correct limits of integration in terms of x \checkmark determines the integrand for the first integral correctly \checkmark determines the integrand for the second integral correctly \checkmark evaluates the total area correctly

Question 13

A cable in a bridge is required to support a weight of 10000 Newtons. Tina tests a random sample of 100 cables from a supplier. The sample mean is found to be 10300 Newtons and the sample standard deviation 400 Newtons.
(a) Based on Tina's sample, obtain a 95\% confidence interval for μ, the population mean cable strength.

Solution	
Sample mean is normally distributed $\bar{X} \sim N\left(\mu, s_{\bar{X}}{ }^{2}\right)$ using $s_{\bar{X}}=\frac{400}{\sqrt{100}}=40$	
For 95\% confidence use $k=1.96 \quad(1.9599 .)$.	
Confidence interval: $\quad 10300-1.96(40) \leq \mu \leq 10300+1.96(40)$	
i.e. $10221.6 \leq \mu \leq 10378.4 \quad$ Newtons	
Specific behaviours	
\checkmark uses 10 300 as the centre of the interval	
\checkmark calculates the correct standard deviation for the sample mean	
\checkmark uses the correct z score for the 95\% confidence level	
\checkmark calculates the upper and lower limits correctly	

(b) State whether each of the following statements is true or false. Provide reasons for your answer and state any assumptions.
(i) If another sample of 100 cables is taken, then the sample mean will fall within the confidence interval found at part (a). (2 marks)

Solution		
Statement is FALSE. The sample mean is based on another random sample and it is not a certainty that the sample mean will fall within the confidence interval obtained at part (a). i.e. it is not a certainty due to random sampling.		
Specific behaviours		
\checkmark states that the statement is false		
\checkmark justifies the answer i.e. it is not a certainty due to random sampling		

(ii) If a single cable is selected at random, then the strength of the cable will fall within the confidence interval found at part (a).

Solution	
Statement is FALSE. This is a single observation (not a sample mean) of a cable strength. The distribution of a single observation will have a larger variation than the variation of a sample mean and may fall outside of the interval.	
Specific behaviours	
\checkmark states that the statement is false	
\checkmark justifies the answer i.e. single observation has a larger variation	

Question 13 (continued)
Jon, a colleague of Tina, said, 'The cable strengths are not normally distributed, so the calculation for the confidence interval is incorrect'.
(c) How should Tina respond to Jon's comment?

Solution	
Tina should inform Jon that he is NOT correct.	
Not knowing the nature of the underlying distribution of the cable strengths does not make any difference. The sample mean based on a sample size of 100 will be approx. normally distributed irrespective of the population.	
Specific behaviours	
\checkmark states that Jon's statement is not correct	
\checkmark justifies the answer	
i.e. the sample mean WILL be normally distributed or refers to the large sample size	

A different sample of 36 cables is taken and it is found that the standard deviation is 500 Newtons. A confidence interval for the population mean cable strength is determined to be $9900 \leq \mu \leq 10200$.
(d) Determine the confidence level, to the nearest 0.1%, used to calculate this interval.
(3 marks)

Solution

Given $9900 \leq \mu \leq 10200$ we can infer that the sample mean was

$$
\bar{X}=\frac{9900+10200}{2}=10050 \quad \text { Hence } k \times \frac{500}{\sqrt{36}}=150
$$

Solving gives $k=1.8$
$\therefore P(-1.8<z<1.8)=0.9281 \ldots \quad$ where $\quad z=N\left(0,1^{2}\right)$ standard normal variable Hence the confidence level used was 92.8% (to nearest 0.1%)

Specific behaviours

\checkmark determines the variation of 150 Newtons either side of the sample mean
\checkmark solves for the critical z score to yield this variation
\checkmark determines the confidence level correctly (to nearest 0.1\%)

Question 14

A small drone is launched and, after hovering in an initial position, it flies in a straight line under the control of its operator. The position of the drone from the operator is given by
$\underset{\sim}{r}(t)=\left(\begin{array}{c}100+0.5 t \\ 0.6 t \\ 50-0.02 t\end{array}\right)$ metres, where t is the time in seconds it has been flying in a straight line.

The top of a mobile phone tower is positioned at $200 \underset{\sim}{i}+150 \underset{\sim}{j}+30 \underset{\sim}{k}$ relative to the operator i.e. the mobile phone tower is 30 metres tall.

(a) After two minutes of flight, how high is the drone above the ground?

$\underset{\sim}{r}(120)=\left(\begin{array}{c}100+0.5(120) \\ 0.6(120) \\ 50-0.02(120)\end{array}\right)=\left(\begin{array}{c}160 \\ 72 \\ 47.6\end{array}\right) \quad \therefore$ The drone is 47.6 metres above the ground.
Specific behaviours
\checkmark substitutes $t=120$ and evaluates component(s) correctly
\checkmark writes a conclusion for the height of the drone (uses the third component)

Question 14 (continued)

(b) Write the expression for the position vector of the drone from the top of the phone tower after t seconds.

$\overrightarrow{T D}(t)=\left(\begin{array}{c}100+0.5 t \\ 0.6 t \\ 50-0.02 t\end{array}\right)-\left(\begin{array}{c}200 \\ 150 \\ 30\end{array}\right)=\left(\begin{array}{c\|}0.5 t-100 \\ 0.6 t-150 \\ 20-0.02 t\end{array}\right)$ \checkmark Specific behaviours \checkmark writes a separation vector correctly (using the correct order of subtraction)

The operator knows that the drone will not strike the mobile phone tower. However, the operator does not know that the drone will cause interference when it is less than 50 metres from the top of the tower.
(c) Determine whether the drone will cause interference to the mobile phone tower and, if so, for how long will this occur, correct to the nearest second.

Solution
Require $\|\overrightarrow{T D}(t)\|<50$ for interference.
$\|\overrightarrow{T D}(t)\|=\sqrt{(0.5 t-100)^{2}+(0.6 t-150)^{2}+(20-0.02 t)^{2}}$

Using CAS: We find that when $t=174.31$ and $t=285.71$ to give $y=50$

Hence YES the drone will cause interference and the period of time will be:
$\Delta t=285.71-174.31=111.4$ seconds
i.e. the drone interferes for approx. 111 seconds i.e. 1 minute and 51 seconds.

Note: The closest approach is 24.62 metres after 230.01 seconds
Specific behaviours
\checkmark forms the equation or inequality that $|\overrightarrow{T D}(t)|<50$
\checkmark forms the expression for the magnitude of the separation correctly
\checkmark states that the drone does interfere with the phone tower
\checkmark deduces how long the interference occurs to the nearest second

Question 15

A battery-powered model race car moves around a race track as indicated in the diagram below. The car's initial position is point A.

At any time t seconds, the velocity vector $\underset{\sim}{v}(t)$ of the model race car is given by:

$$
\underset{\sim}{v}(t)=\binom{-\sin \left(\frac{t}{3}\right)}{2 \cos (t)} \text { metres per second. }
$$

(a) Determine the initial velocity vector and show this on the diagram above.

$\underset{\sim}{v}(0)=\binom{-\sin (0)}{2 \cos 0}=\binom{0}{2} \quad$ Solution
i.e. The initial velocity vector is $2 \underset{\sim}{j} \mathrm{~m} / \mathrm{sec}$
i.e. the initial velocity is $2 \mathrm{~m} / \mathrm{sec}$ UPWARDS or the positive y direction.
Specific behaviours \checkmark determines the vector velocity components correctly \checkmark draws the vector correctly on the diagram

(b) Write an expression that will determine the change in displacement over the first $\frac{3 \pi}{2}$ seconds.

$\underset{\sim}{r}=\int_{0}^{\frac{3 \pi}{2}} \underset{\sim}{v}$
writes a definite integral with the correct limits
\checkmark uses the velocity vector (with correct notation) as the integrand

Question 15 (continued)
(c) Determine the displacement vector $\underset{\sim}{r}(t)$.

$\underset{\sim}{r}(t)=\int \underset{\sim}{v}(t) d t=\int\binom{-\sin \left(\frac{t}{3}\right)}{2 \cos (t)} d t=\binom{3 \cos \left(\frac{t}{3}\right)+c}{2 \sin (t)+k}$
Since $\underset{\sim}{r}(0)=\binom{3}{0}$ then $c=0, k=0$ i.e. $\underset{\sim}{r}(t)=\binom{3 \cos \left(\frac{t}{3}\right)}{2 \sin (t)}$
$\left.\begin{array}{l}\checkmark \text { writes the displacement vector function as the integral of the velocity vector function } \\ \checkmark \\ \checkmark \text { anti-differentiates each component correctly } \\ \checkmark\end{array}\right)$

It can be shown that the model race car's speed is at a minimum when it reaches point B on the track, one of the sharpest points on the curve.
(d) Determine the acceleration vector $\underset{\sim}{a}$ when the car reaches point B, giving components correct to 0.01 .
(3 marks)

(e) Determine the distance, correct to 0.01 metres, that the model race car travels in completing one lap of the track.

Solution

One lap of the circuit is the interval $0 \leq t \leq 6 \pi$ since $3 \cos \left(\frac{t}{3}\right)=3$ for one circuit.
Distance $=\int_{0}^{6 \pi}|\underset{\sim}{v}(t)| d t=\int_{0}^{6 \pi} \sqrt{\sin ^{2}\left(\frac{t}{3}\right)+4 \cos ^{2}(t)} d t$
= 28.1645...
i.e. the model race car travels 28.16 metres in completing one lap of the track

Specific behaviours

\checkmark determines the value of t when the car completes one lap
\checkmark writes a definite integral using the correct expression for the speed function
\checkmark evaluates correctly to 0.01 metres

Question 16

Function f is defined by its graph shown below. The constants $a, b>0$ where $b>a$.

(a) Determine the defining rule for function $f(x)$ in terms of a, b.

Solution

From the graph, f is an absolute value function of the form:
$f(x)=k|x-a| \quad$ Using $f(0)=b$ then $b=k|0-a|$
i.e. $b=k(a) \quad \therefore k=\frac{b}{a} \quad$ Hence $f(x)=\frac{b}{a}|x-a|$ OR $f(x)=\left|\frac{b x}{a}-b\right|$

Specific behaviours

\checkmark writes an absolute value function
\checkmark uses the expression $|x-a|$
\checkmark uses the vertical scale factor $\frac{b}{a}$

Alternative Solution

Consider f as a piecewise linear function: Slopes are $-\frac{b}{a}$ and $\frac{b}{a}$
$f(x)= \begin{cases}-\left(\frac{b}{a}\right) x+b, & x<a \\ \left(\frac{b}{a}\right) x-b, & x \geq a\end{cases}$
\checkmark writes the domain for each component correctly
\checkmark uses the gradient $\frac{b}{a}$ in forming linear functions
\checkmark writes the correct expression for each linear component

Question 16 (continued)

(b) By using the substitution $u=2 x-a$, determine an expression, in terms of a, b, for the value of $\int_{\frac{a}{2}}^{a} f(2 x-a) d x$.

Solution

Using $u=2 x-a$ then for $x=\frac{a}{2}, u=0$ and $x=a, u=a$
$\frac{d u}{d x}=2 \quad \therefore \quad d x=\frac{d u}{2}$
$\int_{\frac{a}{2}}^{a} f(2 x-a) d x=\int_{0}^{a} f(u) \frac{d u}{2}$
$=\frac{1}{2} \int_{0}^{a} f(u) d u$
$=\frac{1}{2} \times($ Area under the graph of f from $x=0$ to $x=a)$
$=\frac{1}{2} \times\left(\frac{1}{2} \times a \times b\right)$
$=\frac{a b}{4}$

Specific behaviours

\checkmark changes the limits of integration correctly
\checkmark writes $d x$ in terms of $d u$ correctly
\checkmark writes the integral in terms of u correctly
\checkmark identifies the integral as being equal to the area under the graph from $x=0$ to $x=a$ \checkmark writes the value for the integral in terms of a, b correctly

Question 17

After t seconds, the displacement x centimetres of a small mass attached to a spring, oscillates about a fixed point O according to the differential equation $\frac{d^{2} x}{d t^{2}}=-\pi^{2} x$.

The initial velocity is 8π centimetres per second and the initial displacement is zero.
(a) Determine the function $x(t)$ that gives the displacement of the mass at time t. (3 marks)

Solution

From the differential equation $\frac{d^{2} x}{d t^{2}}=-\pi^{2} x \quad$ hence $n^{2}=\pi^{2} \quad$ i.e. $n=\pi$
This has the general solution $x(t)=A \sin (n t+\alpha)$ for simple harmonic motion.
i.e. $x(t)=A \sin (\pi t+\alpha)$ i.e. $x(0)=0$ gives $0=A \sin (\alpha)$
$\therefore v(t)=A \pi \cos (\pi t+\alpha)$ i.e. $v(0)=8 \pi$ gives $8 \pi=A \pi \cos (\alpha)$
Solving gives $\alpha=0, A=8$
i.e. $x(t)=8 \sin (\pi t)$

Specific behaviours

\checkmark uses a trigonometric function (either sine or cosine) for displacement
\checkmark determines the amplitude coefficient A correctly
\checkmark determines the phase coefficient α correctly

Alternative Solution
From the differential equation $\frac{d^{2} x}{d t^{2}}=-\pi^{2} x \quad$ hence $n^{2}=\pi^{2} \quad$ i.e. $n=\pi$
This has the general solution $x(t)=A \cos (n t+\alpha)$ for simple harmonic motion.
i.e. $x(t)=A \cos (\pi t+\alpha) \quad$ i.e. $x(0)=0$ gives $0=A \cos (\alpha)$
$\therefore v(t)=-A \pi \sin (\pi t+\alpha) \quad$ i.e. $v(0)=8 \pi$ gives $8 \pi=-A \pi \sin (\alpha)$
Solving gives $\alpha=-\frac{\pi}{2}, A=8$
i.e. $x(t)=8 \cos \left(\pi t-\frac{\pi}{2}\right)=8 \cos \left(\frac{\pi}{2}-\pi t\right)=8 \sin (\pi t)$
\quad Specific behaviours
\checkmark uses a trigonometric function (either sine or cosine) for displacement \checkmark determines the amplitude coefficient A correctly \checkmark determines the phase coefficient α correctly

Question 17 (continued)
(b) Calculate the distance the mass travels during the first 5 seconds.

Solution			
From S.H.M. we know that the period $T=\frac{2 \pi}{\pi}=2$ seconds.			
In each period of oscillation the mass will move a distance of $4 A=32 \mathrm{~cm}$			
Hence over 5 seconds, Distance $=2(4 A)+2 A=10 A=80 \mathrm{~cm}$			
Specific behaviours			
\checkmark determines the period of oscillation			
\checkmark states that during one oscillation the distance travelled is $4 A$			
\checkmark determine the distance travelled for 5 seconds correctly			

Alternative Solution
Distance $=\int_{0}^{5}\|v(t)\| d t=\int_{0}^{5}\left\|8 \pi \sin \left(\pi t-\frac{\pi}{2}\right)\right\| d t \quad$ or $\int_{0}^{5}\|8 \pi \cos (\pi t)\| d t$ $=80 \mathrm{~cm}$
Specific behaviours
\checkmark wses the correct expression for the velocity function
\checkmark evaluates the integral correctly

The differential equation $\frac{d^{2} x}{d t^{2}}=-\pi^{2} x$ assumes that the amplitude of oscillation A is a constant over time.

Now assume that friction reduces the amplitude of the oscillation according to the equation $\frac{d A}{d t}=-0.4 A$. Also assume $A(0)=8$ centimetres.
(c) Determine the function $A(t)$ that gives the amplitude of the mass.

Solution
From the equation $\frac{d A}{d t}=-0.4 A \quad A(t)=A(0) e^{-k t}$ is a solution $\therefore A(0)=8$ and $k=0.4$ i.e. $A(t)=8 e^{-0.4 t}$ is the function for the amplitude
Specific behaviours
\checkmark uses an exponential function for the amplitude, with $A(0)=8$ \checkmark determines the value for k correctly

As time passes, the amplitude continues to decrease to the point at which the small mass appears to stop oscillating. This occurs when the amplitude is less than 0.01 cm .
(d) Determine, correct to the nearest 0.1 seconds, how long it takes for the small mass to appear to stop oscillating.
(3 marks)

Solution

We require $A(t)<0.01$ i.e. $8 e^{-0.4 t}<0.01$
Solving gives $t=16.711 \ldots$
i.e. It will take 16.8 seconds for the small mass to appear to stop oscillating.

Specific behaviours

```
\(\checkmark\) forms an inequality (or equation) to solve for \(t\)
\(\checkmark\) solves the inequality (or equation) correctly
\(\checkmark\) concludes correctly for the value of \(t\) to 0.1 seconds
```


Question 18

A young child rides on a merry-go-round at a carnival. The merry-go-round has a radius of 5 metres and completes one revolution every 12 seconds. The parent of the young child stands and watches at point P, exactly 3 metres away from point B.

The ride begins at point B, when the child is closest to the parent, and the merry-go-round rotates in an anti-clockwise direction at a constant speed. At any point in time, point C is the position of the child on the merry-go-round.

Let $\quad t=$ the number of seconds the ride has been in progress (from starting at point B)
$s=P C=$ the distance that the child is from the parent (metres)
$\theta=$ size of $\angle B O C$ (radians)
(a) Show that $\frac{d \theta}{d t}=\frac{\pi}{6}$ radians per second.

The merry go-round does one revolution of 2π radians every 12 seconds, so
$\frac{d \theta}{d t}=\frac{2 \pi}{12}=\frac{\pi}{6}$ radians per second. \checkmark Specific behaviours \checkmark states that 2π radians is traversed in 12 seconds

(b) Show that $s^{2}=89-80 \cos \theta$.

In $\triangle P O C$: Applying the Cosine Rule $s^{2}=8^{2}+5^{2}-2(8)(5) \cos \theta$ i.e. $s^{2}=89-80 \cos \theta$
Specific behaviours
\checkmark applies the cosine rule correctly in $\triangle P O C$

(c) By differentiating $s^{2}=89-80 \cos \theta$ implicitly with respect to time t, determine correct to the nearest 0.01 metre per second, the rate at which the child is moving away from the parent when the ride has been in progress for 4 seconds.

Solution

Require the value of $\frac{d s}{d t}$ when $t=4$ i.e. when $\theta=\frac{4 \pi}{6}=\frac{2 \pi}{3}$
Differentiating $s^{2}=89-80 \cos \theta$ implicitly with respect to time :
$2 s . \frac{d s}{d t}=-80(-\sin \theta) \cdot \frac{d \theta}{d t} \quad$ when $\theta=\frac{2 \pi}{3} \quad s^{2}=89-80\left(-\frac{1}{2}\right)=129$
i.e. $s=\sqrt{129}$
i.e. $2 \sqrt{129} \frac{d s}{d t}=80\left(\sin \left(\frac{2 \pi}{3}\right)\right) \times \frac{\pi}{6}$
i.e. $\frac{d s}{d t}=80\left(\frac{\sqrt{3}}{2}\right) \times \frac{\pi}{6} \times \frac{1}{2 \sqrt{129}}=1.5969 \ldots . \mathrm{m} / \mathrm{sec}$

Hence after 4 seconds, the child is moving away at a rate of 1.60 metres per second.
Specific behaviours
\checkmark determines the correct values for θ and s when $t=4$
$\checkmark \checkmark$ differentiates implicitly with respect to time correctly
\checkmark evaluates correctly (no penalty for incorrect rounding)

Question 18 (continued)
The parent notices that the child appears to move away from point P at varying speeds.
(d) Determine the value for $\cos \theta$ when the rate $\frac{d s}{d t}$ is a maximum.
Solution
From $s=\sqrt{89-80 \cos \theta}=\sqrt{89-80 \cos \left(\frac{\pi t}{6}\right)}$ and substituting into
$2 s \cdot \frac{d s}{d t}=80(\sin \theta) \cdot \frac{d \theta}{d t} \quad$ we obtain $\frac{d s}{d t}=\frac{80 \pi}{6} \sin \theta \times \frac{1}{2 \sqrt{89-80 \cos \theta}}$
i.e. $\frac{d s}{d t}=\frac{80 \pi}{6} \sin \left(\frac{\pi t}{6}\right) \times \frac{1}{2 \sqrt{89-80 \cos \left(\frac{\pi t}{6}\right)}}$

Using CAS we can define $s(\theta)$ or $s(t)$:
\therefore Rate $r(t)=\frac{d s}{d t}$

Plotting the graph of $r(t)=\frac{d s}{d t}: \quad \mathrm{OR}$
There is a maximum TP at $t=1.71059 \mathrm{sec}$
define $s(t)=\sqrt{89-80 \cos \left(\frac{\pi t}{6}\right)}$
done
define $r(t)=\frac{d}{d t}(s(t))$
done
solve $\left.\left(\frac{d}{d t}(r(t))=0, t\right) \right\rvert\, 0<t<4$
$\{\mathrm{t}=1.710593752\}$
$\left.\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{s}(\mathrm{t})) \right\rvert\, \mathrm{t}=1.710593752$
2. 617993878
\square
Determine when $\frac{d r}{d t}=\frac{d^{2} s}{d t^{2}}=0$
Solving from CAS $t=1.71059 \ldots$ sec

Hence $\theta=\frac{\pi t}{6}=0.8956 \ldots$ radians
$\therefore \quad \cos \theta=0.625=\frac{5}{8}$ for the maximum value of $\frac{d s}{d t}$.
Specific behaviours
\checkmark states the definition for the distance $s(\theta)$ or $s(t)$
\checkmark states that $\frac{d^{2} s}{d t^{2}}=0$ is the condition for maximum $\frac{d s}{d t}$
\checkmark solves for the value of θ or t correctly
\checkmark solves for the value of $\cos \theta$ correctly

Alternative Solution

The maximum of $\frac{d s}{d t}$ will occur when $\frac{d^{2} s}{d t^{2}}=0$
Differentiating $2 s \cdot \frac{d s}{d t}=(80 \sin \theta) \cdot \frac{\pi}{6}$ implicitly with respect to time:
$2 s .\left(\frac{d^{2} s}{d t^{2}}\right)+2 .\left(\frac{d s}{d t}\right)\left(\frac{d s}{d t}\right)=80\left(\frac{\pi}{6}\right) \cos \theta \cdot\left(\frac{d \theta}{d t}\right)$
i.e. $2 s .(0)+2\left(\frac{80 \pi \sin \theta}{6 \times 2 s}\right)^{2}=80\left(\frac{\pi}{6}\right) \cos \theta .\left(\frac{\pi}{6}\right) \quad \ldots \ldots$. substituting $\frac{d^{2} s}{d t^{2}}=0$
i.e. $2 \times \frac{80^{2} \pi^{2} \sin ^{2} \theta}{6^{2} \times 4(89-80 \cos \theta)}=\frac{80 \pi^{2}}{6^{2}} \cos \theta \quad \ldots \ldots$. substituting for $\frac{d s}{d t}$ and s^{2}
i.e. $40 \sin ^{2} \theta=(89-80 \cos \theta) \cos \theta$
i.e. $40\left(1-\cos ^{2} \theta\right)=(89-80 \cos \theta) \cos \theta$
i.e. $40 \cos ^{2} \theta-89 \cos \theta+40=0$
i.e. $(8 \cos \theta-5)(5 \cos \theta-8)=0$
$\therefore \cos \theta=\frac{5}{8} \quad$ since $\cos \theta \neq \frac{8}{5}>1$
Hence $\frac{d s}{d t}$ is a maximum when the child is at a position such that $\cos \theta=\frac{5}{8}$
i.e. $\theta=0.8956 \ldots$
i.e. when $t=1.710 \ldots$ seconds.

Note : when $\cos \theta=\frac{5}{8}$, this means that $\overleftrightarrow{P C}$ is a tangent to the circle.
The maximum value for $\frac{d s}{d t}=\frac{5 \pi}{6}=2.6179 \ldots \mathrm{~m} / \mathrm{sec}$

Specific behaviours

\checkmark states that $\frac{d^{2} s}{d t^{2}}=0$ is the condition for maximum $\frac{d s}{d t}$
$\checkmark \checkmark$ differentiates implicitly again with respect to time correctly
\checkmark solves for $\cos \theta$ or θ or t correctly to give the position for the child

Question 19

Consider the complex equation $2 z^{6}=1+\sqrt{3} i$.
(a) Solve the above equation, giving solutions in polar form $r \operatorname{cis} \theta$ where $0<\theta<\frac{\pi}{2}$.
(4 marks)

Solution

$z^{6}=\frac{1}{2}+\frac{\sqrt{3}}{2} i=\operatorname{cis}\left(\frac{\pi}{3}\right)$
Solutions are : $z=\operatorname{cis}\left(\frac{\frac{\pi}{3}+2 \pi k}{6}\right)=\operatorname{cis}\left(\frac{\pi}{18}+\frac{\pi}{3} k\right)$ where $k=0,1$
i.e. $z_{0}=\operatorname{cis}\left(\frac{\pi}{18}\right)=\operatorname{cis}\left(10^{\circ}\right)$,

$$
z_{1}=\operatorname{cis}\left(\frac{\pi}{18}+\frac{6 \pi}{18}\right)=\operatorname{cis}\left(\frac{7 \pi}{18}\right)=\operatorname{cis}\left(70^{\circ}\right)
$$

Specific behaviours

\checkmark expresses z^{6} in polar form correctly
\checkmark forms the correct expression for the roots using De Moivre's Theorem
\checkmark states that $z=\operatorname{cis}\left(\frac{\pi}{18}\right)$ is a solution
\checkmark states that $z=\operatorname{cis}\left(\frac{7 \pi}{18}\right)$ is a solution

Now consider the equation $2 z^{n}=1+\sqrt{3} i$, where n is a positive integer.
(b) If $2 z^{n}=1+\sqrt{3} i$ has roots so that there are exactly 3 roots (and only 3) that lie within the first quadrant of the complex plane, determine the possible value(s) of n. Justify your answer.
(3 marks)

Solution

The first solution is $z=\operatorname{cis}\left(\frac{\pi}{3 n}\right)$ is always in the first quadrant irrespective of n.
There are n equally spaced roots, separated by $\frac{2 \pi}{n}$.
The $3^{\text {rd }}$ root is in quadrant 1 so this means that:
$\frac{\pi}{3 n}+\left(2 \times \frac{2 \pi}{n}\right)<\frac{\pi}{2} \quad$ since the argument must be less than $\frac{\pi}{2}$
$\frac{\pi}{3 n}+\frac{4 \pi}{n}<\frac{\pi}{2}$
$\therefore 2 \pi+24 \pi<3 n \pi$
$\therefore n>\frac{26}{3} \quad$ i.e. $n \geq 9$
The 4th root must be in quadrant 2 so this means that:
$\frac{\pi}{3 n}+\left(3 \times \frac{2 \pi}{n}\right)>\frac{\pi}{2} \quad$ since the argument must be greater than $\frac{\pi}{2}$
$\frac{\pi}{3 n}+\frac{6 \pi}{n}>\frac{\pi}{2}$
$\therefore 2 \pi+36 \pi>3 n \pi$
$\therefore n<\frac{38}{3} \quad$ i.e. $n \leq 12$
Hence it must be true that $n=9,10,11$, or 12 .
Alternatively:
There must be either 2 or 3 solutions within each of the other 3 quadrants.
i.e. $n=3+2+2+2=9$ or $n=3+3+2+2=10$ or $n=3+3+3+2=11$ or $n=3+3+3+3=12$

Hence $n=9,10,11$ or 12 .

Specific behaviours

\checkmark states that $n=12$ is a possibility
\checkmark states that $n=9,10,11$ are the other possibilities
\checkmark justifies why there are 4 possibilities

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

