MATHEMATICS SPECIALIST

Calculator-free

ATAR course examination 2018

Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section One: Calculator-free

Question 1

Functions f, g are defined such that:

$$
\begin{aligned}
& f(x)=\sqrt{x-3} \\
& g(x)=\frac{x}{x-2}
\end{aligned}
$$

(a) Determine $g \circ f(x)$.

Solution

$g \circ f(x)=g(\sqrt{x-3})=\frac{\sqrt{x-3}}{\sqrt{x-3}-2}$

Specific behaviours

\checkmark forms a correct expression for $g \circ f(x)$
(b) Determine the domain for $g \circ f(x)$.

Solution

We require $x-3 \geq 0$ so the square root operation is defined. i.e. $x \geq 3$
However, we require that $\sqrt{x-3}-2 \neq 0$ so that division by zero does not occur.
i.e. $\sqrt{x-3} \neq 2$ i.e. $x \neq 7$

Hence $D_{\text {gof }}=\{x \mid x \geq 3, x \neq 7\}$.

Specific behaviours

\checkmark states that $x \geq 3$
\checkmark states that $x \neq 7$
(c) Given that $f^{-1}(x)=x^{2}+3$, is it true that $f^{-1}(-1)=4$?

Explain.

No, this is FALSE.	
The domain for $f^{-1}(x)$ is $x \geq 0$ since $D_{f^{-1}}=R_{f}$.	
Hence $f^{-1}(-1)$ is not defined.	
Specific behaviours	
\checkmark states that the statement is false	
\checkmark states that $f^{-1}(-1)$ is not defined	

Question 2

(a) Solve the following system of equations:

$$
\begin{align*}
& 4 x-y-2 z=5 \tag{1}\\
& 2 x+y-z=4 \tag{2}\\
& x-y-z=3 \tag{3}
\end{align*}
$$

Solution

$(1)-2(2): \quad-3 y=-3$
$\therefore y=1$
(1) $-4(3): \quad 3 y+2 z=-7$

$$
\therefore 3(1)+2 z=-7
$$

$$
\therefore \quad z=-5
$$

(1): $4 x-(1)-2(-5)=5$
$\therefore 4 x+9=5$
$\therefore x=-1$
Hence the solution is unique: $x=-1, \quad y=1, \quad z=-5$.

Specific behaviours

```
\checkmark uses appropriate alegbra correctly with two pairs of equations
\checkmark solves correctly to find the first variable
\checkmark \text { solves correctly to find the second and third variables}
```


Alternative Solution

\(\left[\begin{array}{cccc}4 \& -1 \& -2 \& 5

2 \& 1 \& -1 \& 4

1 \& -1 \& -1 \& 3\end{array}\right]\)| |
| :---: |
| $R_{2} \rightarrow R_{1}-2 R_{2}$ |
| $R_{3} \rightarrow R_{1}-4 R_{3}$ |\(\rightarrow\left[\begin{array}{cccc}4 \& -1 \& -2 \& 5

0 \& -3 \& 0 \& -3

0 \& 3 \& 2 \& -7\end{array}\right]\)
$\therefore-3 y=-3$ i.e. $y=1$
$\therefore \quad 3 y+2 z=-7$ i.e. $3(1)+2 z=-7$
i.e. $z=-5$
$\therefore 4 x-(1)-2(-5)=5$
i.e. $4 x=-4$ i.e. $x=-1$

Hence the solution is unique: $x=-1, \quad y=1, \quad z=-5$.

Specific behaviours

\checkmark applies at least two correct row operations
\checkmark solves correctly to find the first variable
\checkmark solves correctly to find the second and third variables

Question 2 (continued)
Consider another set of equations where k is a constant.

$$
\begin{aligned}
& 2 x-y-z=0 \\
& x-2 y-z=2 \\
& x-2 y+k z=6
\end{aligned}
$$

It can be shown that this system of equations can be reduced to the following:

$$
\begin{aligned}
& x=\frac{-2(k-1)}{3(k+1)} \\
& y=\frac{-4(k+2)}{3(k+1)} \\
& z=\frac{4}{k+1}
\end{aligned}
$$

(b) Explain whether this system of equations will have a unique solution for all real values of k. If not, explain the geometric interpretation of this.
(3 marks)

Solution

This system of equations will have a unique solution for all values of k provided $k \neq-1$.

When $k=-1$ there will be NO solution. This is due to there being TWO planes that are PARALLEL to each other (equations 2 and 3).

Specific behaviours

\checkmark states there is a unique solution for $k \neq-1$
\checkmark states that $k=-1$ will yield no solution
\checkmark states the geometric interpretation for $k=-1$ i.e. two planes are parallel

Question 3

(a) Let $z=a+b i$ be any complex number.

Obtain an equation relating a, b given that $\operatorname{Re}\left(\frac{z-i}{z}\right)=0$.

Solution

$$
\begin{align*}
\frac{z-i}{z}=\frac{a+(b-1) i}{a+b i} & =\frac{a+(b-1) i}{a+b i} \times \frac{a-b i}{a-b i} \tag{1}\\
& =\frac{a^{2}+b(b-1)-a i}{a^{2}+b^{2}} \tag{2}
\end{align*}
$$

Hence if the real part is ZERO then it must be true that:
$a^{2}+b(b-1)=0$.
i.e. $a^{2}+b^{2}-b=0$

Specific behaviours

\checkmark forms the correct expression equivalent to (1)
\checkmark forms the correct expression equivalent to (2)
\checkmark forms the equation relating a, b stating the real part is zero
(b) Let $z=r c i s \theta$ be any complex number. Obtain an expression for:
(i) $\frac{2 i}{\bar{z}}$ in terms of r, θ.

$\frac{2 i}{\bar{z}}=\frac{2 \operatorname{cis}\left(\frac{\pi}{2}\right)}{r c i s(-\theta)}=\frac{2}{r} \operatorname{cis}\left(\theta+\frac{\pi}{2}\right)$
Specificic behaviours
\checkmark converts $2 i$ into polar form correctly \checkmark writes the correct expression for \bar{z} in polar form \checkmark divides polar forms correctly in terms of r, θ

Question 3 (continued)

(ii) $\arg (z+r)$ in terms of θ.

Solution
Let $z=\overrightarrow{O P}=r c i s \theta$ and $r=\overrightarrow{P Q} \cdot O P Q R$ is a rhombus with side length r.
Then the complex number $z+r=\overrightarrow{O Q}$ is a diagonal in the rhombus.
It is a property that a diagonal bisects the angles in a rhombus.
$\therefore s \angle Q O R=\frac{1}{2} s \angle P O R \quad$ i.e. $\arg (z+r)=\frac{\theta}{2}$
\checkmark indicates the vector position for $z+r$ correctly
\checkmark identifies $z+r$ as the diagonal of a rhombus
\checkmark writes the correct expression for $\arg (z+r)$

Question 4

The graph of $f(x)=\frac{k(x-a)(x-b)}{(x-c)(x-d)}$ is shown below.

Determine the value of the constants a, b, c, d and k.

a	b	c	d	k
-3	1	-2	3	2

Explain your choice for the value of k.

Solution

Horizontal intercepts are $x=-3, x=1 \quad \therefore \quad a=-3, \quad b=1$
Vertical asymptotes are $x=-2, x=3 \quad \therefore \quad c=-2, \quad d=3$
Horizontal asymptote is $y=2 \quad \therefore \quad k=2$

Specific behaviours

\checkmark states the values for a, b correctly
\checkmark states the values for c, d correctly
\checkmark states the values for k correctly
\checkmark explains/justifies the value for k

Question 5

Using the substitution $u=\cos (2 x)$, evaluate exactly the definite integral

$$
\int_{0}^{\frac{\pi}{4}} \cos ^{1008}(2 x) \sin (2 x) d x
$$

Solution
Put $u=\cos (2 x) \quad \therefore \quad \frac{d u}{d x}=-2 \sin (2 x) \quad$ i.e. $d x=-\frac{d u}{2 \sin (2 x)}$ When $x=0, u=1$ and $x=\frac{\pi}{4}, u=0$ $\begin{aligned} \int_{0}^{\frac{\pi}{4}} \cos ^{1008}(2 x) \sin (2 x) d x & =\int_{1}^{0}-\frac{u^{1008}}{2} d u \\ & =-\frac{1}{2}\left[\frac{u^{1009}}{1009}\right]_{1}^{0}=-\frac{1}{2}\left[\frac{0}{1009}-\frac{1}{1009}\right]=\frac{1}{2018} \end{aligned}$ Specific behaviours \checkmark uses the substitution $u=\cos (2 x)$ to express the integrand correctly in terms of u \checkmark changes the limits correctly \checkmark anti-differentiates correctly \checkmark evaluates correctly

OR

| $\int_{0}^{\frac{\pi}{4}} \cos ^{1008}(2 x) \sin (2 x) d x$ $=-\frac{1}{2} \int_{0}^{\frac{\pi}{4}}-2 \sin (2 x) \cos ^{1008}(2 x) d x$
 $=-\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{d}{d x}(\cos (2 x))(\cos (2 x))^{1008} d x$
 $=-\frac{1}{2}\left[\frac{\cos ^{1009}(2 x)}{1009}\right]_{0}^{\frac{\pi}{4}}$
 $=-\frac{1}{2018}\left[\cos ^{1009}\left(\frac{\pi}{2}\right)-\cos ^{1009}(0)\right]$
 $=-\frac{1}{2018}[0-1]=\frac{1}{2018}$
 Specific behaviours |
| ---: | :--- |
| \checkmark identifies sin $(2 x)$ as part of the derivative of cos $(2 x)$ |
| \checkmark uses the factor $-\frac{1}{2}$ to express the definite integral |
| \checkmark anti-differentiates correctly using the next highest power |
| \checkmark evaluates correctly |

Question 6

(a) Given that $\frac{2}{(x+1)(x-1)}=\frac{a}{x-1}+\frac{b}{x+1}$, determine the values for a and b. (2 marks)

Solution $\frac{a}{x-1}+\frac{b}{x+1}=\frac{a(x+1)+b(x-1)}{(x+1)(x-1)}=\frac{(a+b) x+(a-b)}{(x+1)(x-1)}$ Hence equating co-efficients we obtain$a+b=0$ i.e. $a=1, \quad b=-1$. $a-b=2$ Specific behaviours \checkmark obtains the numerator correctly in simplifying the algebraic fractions \checkmark determines the values for a and b correctly

(b) Hence determine $\int \frac{1}{x^{2}-1} d x$.

Solution

$$
\begin{aligned}
\int \frac{1}{x^{2}-1} d x & =\frac{1}{2} \int \frac{2}{(x+1)(x-1)} d x \\
& =\frac{1}{2} \int\left(\frac{1}{x-1}-\frac{1}{x+1}\right) d x \\
& =\frac{1}{2}[\ln |x-1|-\ln |x+1|]+c \\
& =\frac{1}{2} \ln \left|\frac{x-1}{x+1}\right|+c
\end{aligned}
$$

Specific behaviours

\checkmark writes the integral in terms of the partial fractions correctly
\checkmark anti-differentiates correctly
\checkmark uses an integration constant

Question 7

(a) Solve the equation $z^{3}+1=0$ giving solutions in polar form rcis θ.

Solution

$z^{3}=-1=\operatorname{cis}(\pi)$
$\therefore \quad z=\operatorname{cis}\left(\frac{\pi+2 \pi k}{3}\right)$ where $k=0,1,2$
$\therefore \quad z_{0}=\operatorname{cis}\left(\frac{\pi}{3}\right), z_{1}=\operatorname{cis}(\pi)=-1, z_{2}=\operatorname{cis}\left(\frac{5 \pi}{3}\right)=\operatorname{cis}\left(-\frac{\pi}{3}\right)$
i.e. $z=\operatorname{cis}\left(\frac{\pi}{3}\right), \operatorname{cis}(\pi), \operatorname{cis}\left(-\frac{\pi}{3}\right)$

Specific behaviours

\checkmark expresses z^{3} as $\operatorname{cis}(\pi)$
\checkmark states the first root in correct polar form for $k=0$
\checkmark states the other 2 roots correctly using the argument separation $\frac{2 \pi}{3}$

It can be shown that $P(z)=z^{5}-2 z^{4}+5 z^{3}+z^{2}-2 z+5$ can be written in the form $P(z)=\left(z^{3}+1\right) Q(z)$.
(b) Determine $Q(z)$.
(1 mark)

Solution

$$
\begin{aligned}
& \begin{aligned}
P(z) & =z^{5}-2 z^{4}+5 z^{3}+z^{2}-2 z+5 \\
& =z^{3}\left(z^{2}-2 z+5\right)+1\left(z^{2}-2 z+5\right) \\
& =\left(z^{3}+1\right)\left(z^{2}-2 z+5\right)
\end{aligned} \\
& \text { Hence } Q(z)=z^{2}-2 z+5 .
\end{aligned}
$$

Specific behaviours
\checkmark determines $Q(z)$ correctly
(c) Hence solve the equation $z^{5}-2 z^{4}+5 z^{3}+z^{2}-2 z+5=0$ giving all solutions in Cartesian form $a+b i$.
(2 marks)

Solution

$\therefore\left(z^{2}-2 z+5\right)\left(z^{3}+1\right)=0$ i.e. Solve $z^{2}-2 z+5=0$ or $z^{3}+1=0$
i.e. $(z-1)^{2}+4=0$ or $z^{3}=-1$
i.e. $[(z-1)+2 i][(z-1)-2 i]=0$ or $z=-1$, cis $\left(\frac{\pi}{3}\right)$, cis $\left(-\frac{\pi}{3}\right)$
i.e. $z=1+2 i, 1-2 i,-1, \frac{1}{2}+\frac{\sqrt{3}}{2} i, \frac{1}{2}-\frac{\sqrt{3}}{2} i$
i.e. $z=1 \pm 2 i,-1, \frac{1}{2} \pm \frac{\sqrt{3}}{2} i$

Specific behaviours

\checkmark states $z=1 \pm 2 i$ as solutions
\checkmark states $z=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$ as solutions

Question 8

A parallelepiped is a prism where each face is a parallelogram. Let $O A P B$ be the parallelogram formed by the horizontal sides $\underset{\sim}{a}=\overrightarrow{O A}$ and $\underset{\sim}{b}=\overrightarrow{O B}$ where
$\underset{\sim}{a}=\left(\begin{array}{l}3 \\ 6 \\ 0\end{array}\right)$ and $\underset{\sim}{b}=\left(\begin{array}{c}-8 \\ 2 \\ 0\end{array}\right)$.
The third side that forms the parallelepiped is $\underset{\sim}{c}=\overrightarrow{O C}$ where $\underset{\sim}{c}=\left(\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right)$.

Let $\quad \theta=$ the size of $\angle A O B$
$\phi=$ the angle between $\overrightarrow{O C}$ and the positive z axis
(a) Determine $\underset{\sim}{a} \times \underset{\sim}{b}$.

$\underset{\sim}{a} \times \underset{\sim}{b}=\left(\begin{array}{l}3 \\ 6 \\ 0\end{array}\right) \times\left(\begin{array}{c}-8 \\ 2 \\ 0\end{array}\right)=\left(\begin{array}{l}6(0)-0(2) \\ 0(-8)-3(0) \\ 3(2)-6(-8)\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 54\end{array}\right)$
Spelution
\checkmark uses the correct form for each component for the cross product
\checkmark evaluates each component correctly

The volume of any prism can be found by considering the formula Volume $=$ Area (Base) $\times h$, where $h=$ the perpendicular height of the prism.

It is also true that $|\underset{\sim}{a} \times \underset{\sim}{b}|=|\underset{\sim}{a}||\underset{\sim}{b}| \sin \theta$.
(b) Explain why $\underset{\sim}{c} \cdot(\underset{\sim}{a} \times \underset{\sim}{b})$ will determine the volume of the parallelepiped.

Solution

From Volume $=$ Area $($ Base $) \times h$
$\operatorname{Area}(O A P B)=2 \times \frac{1}{2}(O A)(O B) \sin \theta=|\underset{\sim}{a} \times \underset{\sim}{b}|$
Perpendicular height $h=(O C) \cos \phi$
Note that $\underset{\sim}{a} \times \underset{\sim}{b}$ is parallel to the z-axis hence the angle between $\underset{\sim}{c}$ and $\underset{\sim}{a} \times \underset{\sim}{b}$ is also ϕ.

Hence volume $V=|\underset{\sim}{c}| \cos \phi \quad \underset{\sim}{a} \times \underset{\sim}{b}|=|\underset{\sim}{c}|| \underset{\sim}{a} \times \underset{\sim}{b} \mid \cos \phi$. i.e. a dot product

$$
=\underset{\sim}{c} \cdot(\underset{\sim}{a} \times \underset{\sim}{b}) .
$$

Since the value $\cos \phi$ may be less than zero we consider the absolute value of this dot product. i.e. $V=|\underset{\sim}{c} \cdot(\underset{\sim}{a} \times \underset{\sim}{b})|$ Specific behaviours
\checkmark justifies that $|\underset{\sim}{a} \times \underset{\sim}{b}|$ determines the area of the parallelogram base \checkmark justifies that the perpendicular height $h=|\underset{\sim}{c}| \cos \phi$
(c) Hence determine the exact volume of the parallelepiped.

Solution
Using $V=\underset{\sim}{c} \cdot(\underset{\sim}{a} \times \underset{\sim}{b})=\left(\begin{array}{r}-1 \\ 2 \\ 5\end{array}\right) \cdot\left(\begin{array}{r}0 \\ 0 \\ 54\end{array}\right)=(-1) 0+2(0)+5(54)=270$ cubic units
\checkmark Specific behaviours
\checkmark evaluates the dot product correctly

Question 9

(a) By using an appropriate trigonometric identity, simplify in terms of u, the expression $x^{2}-2 x+4$ where $x=\sqrt{3} \tan (u)+1$.

	Solution
$x^{2}-2 x+4$	$=(\sqrt{3} \tan u+1)^{2}-2(\sqrt{3} \tan u+1)+4$
	$=3 \tan ^{2} u+2 \sqrt{3} \tan u+1-2 \sqrt{3} \tan u-2+4$
	$=3 \tan ^{2} u+3$
	$=3\left(\tan ^{2} u+1\right)$
	$=3 \sec ^{2} u$

Specific behaviours

\checkmark expands correctly to obtain $3 \tan ^{2} u+3$
\checkmark uses the trigonometric identity correctly to simplify to $3 \mathrm{sec}^{2} u$
(b) Hence evaluate $\int_{1}^{2} \frac{d x}{\left(x^{2}-2 x+4\right)^{\frac{3}{2}}}$ exactly.

Solution

Using $\quad x=\sqrt{3} \tan (u)+1 \quad \therefore \quad \frac{d x}{d u}=\sqrt{3} \sec ^{2} u \quad$ i.e. $\quad d x=\sqrt{3} \sec ^{2} u . d u$ When $x=1, u=0$ and $x=2, u=\frac{\pi}{6}$

$$
\begin{aligned}
\therefore \int_{1}^{2} \frac{d x}{\left(x^{2}-2 x+4\right)^{\frac{3}{2}}} & =\int_{0}^{\frac{\pi}{6}} \frac{\sqrt{3} \sec ^{2} u \cdot d u}{\left(3 \sec ^{2} u\right)^{\frac{3}{2}}}=\int_{0}^{\frac{\pi}{6}} \frac{\sqrt{3} \sec ^{2} u \cdot d u}{3 \sqrt{3} \sec ^{3} u}=\int_{0}^{\frac{\pi}{6}} \frac{d u}{3 \sec u} \\
& =\int_{0}^{\frac{\pi}{6}} \frac{\cos u}{3} d u \\
& =\left[\frac{\sin u}{3}\right]_{0}^{\frac{\pi}{6}}=\frac{1}{3}\left(\frac{1}{2}\right)-\frac{1}{3}(0)=\frac{1}{6}
\end{aligned}
$$

Specific behaviours

\checkmark obtains $d x$ correctly in terms of $d u$
\checkmark changes the limits correctly in terms of u
\checkmark simplifies the integrand correctly in terms of u using the expression from part (a)
\checkmark anti-differentiates correctly
\checkmark evaluates correctly

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

$$
\begin{aligned}
& \text { Published by the School Curriculum and Standards Authority of Western Australia } \\
& \text { 303 Sevenoaks Street } \\
& \text { CANNINGTON WA } 6107
\end{aligned}
$$

