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Section One: Calculator-free 35% (51 Marks) 
 
Question 1  (5 marks) 
 
Functions f, g are defined such that: 
 
 ( ) 3  f x x= −  
 

 ( )
2

  xg x
x

=
−

 

 
(a) Determine ( )g f x . (1 mark) 
 

Solution 

( ) ( ) 33
3 2

    
  

xg f x g x
x

−
= − =

− −
  

Specific behaviours 
 forms a correct expression for ( )g f x  

 
 
(b) Determine the domain for ( )g f x . (2 marks) 
 

Solution 
We require  3 0x − ≥  so the square root operation is defined. i.e. 3x ≥  
However, we require that 3 2 0  x − − ≠  so that division by zero does not occur. 
i.e. 3 2x − ≠  i.e. 7x ≠  
 
Hence { | 3, 7}gofD x x x= ≥ ≠ . 

Specific behaviours 
 states that 3x ≥  
 states that 7x ≠  

 
 
(c) Given that ( )1 2 3  f x x− = + , is it true that ( )1 1 4f − − = ? (2 marks) 
 
 Explain. 
 

Solution 
No, this is FALSE. 
The domain for ( )1f x−  is 0x ≥  since  1 ff

D R− = . 

Hence ( )1 1f − −  is not defined. 
Specific behaviours 

 states that the statement is false 
 states that ( )1 1f − −  is not defined 
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Question 2  (6 marks) 
 
(a) Solve the following system of equations: (3 marks) 
 
 ( )

( )
( )

4 2 5 ... 1

2 4 ... 2

3 ... 3

      
        

          

x y z

x y z

x y z

− − =

+ − =

− − =

 

 
Solution 

( ) ( )

( ) ( )
( )

( ) ( ) ( )

1 2 2 : 3 3
1

1 4 3 : 3 2 7

3 1 2 7
5

1 : 4 1 2 5 5
4 9 5

1

   
                    

    
                  
                   

  
          
           

y
y

y z

z
z

x
x

x

− − = −

∴ =

− + = −

∴ + = −

∴ = −

− − − =

∴ + =
∴ = −

  

 
Hence the solution is unique: 1, 1, 5      x y z= − = = − . 

Specific behaviours 
 uses appropriate alegbra correctly with two pairs of equations 
 solves correctly to find the first variable 
 solves correctly to find the second and third variables 

 
Alternative Solution 

4 1 2 5
2 1 1 4
1 1 1 3

       
           
        

− − 
 − 
 − − 

                                   
4 1 2 5
0 3 0 3
0 3 2 7

        
         
            

− − 
 − − 
 − 

 

 
13 3  i.e.      yy =∴ − = −   

3 2 7  y z∴ + = −   i.e. ( )3 1 2 7z+ = −    

                            i.e. 5z = −   
( ) ( )4 1 2 5 5  x∴ − − − =  

i.e. 4 4x = −   i.e. 1x = −   
Hence the solution is unique: 1, 1, 5      x y z= − = = − . 

Specific behaviours 
 applies at least two correct row operations 
 solves correctly to find the first variable 
 solves correctly to find the second and third variables 

 
  

2 1 22R R R→ −   
3 1 34R R R→ −   
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Question 2 (continued) 
 
Consider another set of equations where k  is a constant. 
 
 2 0

2 2
2 6

− − =
− − =
− + =

x y z
x y z
x y kz

 

 
It can be shown that this system of equations can be reduced to the following: 
 

 
( )
( )

2 1
3 1

 
k

x
k

− −
=

+
  

 
( )
( )

4 2
3 1

 
k

y
k

− +
=

+
  

 4
1

 z
k

=
+

  

 
 
(b) Explain whether this system of equations will have a unique solution for all real values of 

k . If not, explain the geometric interpretation of this. (3 marks) 
 

Solution 
This system of equations will have a unique solution for all values of k  provided 

1k ≠ − . 
 
When 1k = −  there will be NO solution. This is due to there being TWO planes that 
are PARALLEL to each other (equations 2 and 3). 

Specific behaviours 
 states there is a unique solution for 1k ≠ −  
 states that 1k = −  will yield no solution 
 states the geometric interpretation for 1k = −  i.e. two planes are parallel 
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Question 3  (9 marks) 
 
(a) Let z a bi= +  be any complex number.  (3 marks) 
 

 Obtain an equation relating ,a b  given that Re 0.z i
z
−  = 

 
 

 
Solution 

( ) ( ) ( )

( ) ( )
2

2 2

1 1
.... 1

1
.... 2

           

  
                                      

a b i a b iz i a bi
z a bi a bi a bi

a b b ai
a b

+ − + −− −
= = ×

+ + −
+ − −

=
+

  

Hence if the real part is ZERO then it must be true that: 
      ( )2 1 0a b b+ − = . 

i.e. 2 2 0a b b+ − =  
Specific behaviours 

 forms the correct expression equivalent to ( )1  

 forms the correct expression equivalent to ( )2  
 forms the equation relating ,a b  stating the real part is zero 

 
 
(b) Let z rcisθ=  be any complex number. Obtain an expression for: 
 

(i) 2i
z

 in terms of , .r θ  (3 marks) 

 
Solution 

( )

2
2 22

2
      

cis
i cis

z rcis r

π
πθ

θ

 
    = = + −  

 

Specific behaviours 
 converts 2i  into polar form correctly 
 writes the correct expression for z  in polar form 
 divides polar forms correctly in terms of ,r θ  
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Question 3 (continued) 
 

(ii) ( )arg z r+  in terms of θ . (3 marks) 
 

Solution 

 
 
Let z OP rcisθ= =



 and r PQ=


. OPQR  is a rhombus with side length r. 
Then the complex number z r OQ+ =



 is a diagonal in the rhombus. 
It is a property that a diagonal bisects the angles in a rhombus. 
 

1
2

    s QOR s POR∴ ∠ = ∠    i.e. ( )arg
2

  z r θ
+ =  

Specific behaviours 
 indicates the vector position for z r+  correctly 
 identifies z r+  as the diagonal of a rhombus 
 writes the correct expression for ( )arg z r+  
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Question 4  (4 marks) 
 

The graph of ( ) ( )( )
( )( )

  
k x a x b

f x
x c x d
− −

=
− −

 is shown below. 

 

 
 
Determine the value of the constants a, b, c, d and k. 
 

a  b  c  d  k  

-3 1 -2 3 2 

 
Explain your choice for the value of k . 
 

Solution 
Horizontal intercepts are 3, 1 x x= − =   3, 1    a b∴ = − =   
Vertical asymptotes are 2, 3 x x= − =   2, 3    c d∴ = − =  
Horizontal asymptote is 2y =   2  k∴ =   

Specific behaviours 
 states the values for a, b correctly 
 states the values for c, d correctly 
 states the values for k correctly  
 explains/justifies the value for k 
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Question 5  (4 marks) 
 
Using the substitution ( )cos 2u x= , evaluate exactly the definite integral  

( ) ( )
4

1008

0

cos 2 sin 2x x dx

π

∫ . 

 
Solution 

( ) ( ) ( )

( ) ( )
0 10084

1008

0 1
01009

1

0, 1

cos 2 2sin 2 . .
2sin 2

, 0
4

cos 2 sin 2
2

1 1 0 1
2 1009 2 1009 1

x u x

du duPut u x x i e dx
dx x

u

ux x dx du

u

π

π
= = =

= ∴ = − = −

=

= −

 
= − = − − 

 

∫ ∫

When     and  

                 

 

      

                                          1
009 2018

  =  
   

 

Specific behaviours 
 uses the substitution ( )cos 2u x=  to express the integrand correctly in terms of u  
 changes the limits correctly 
 anti-differentiates correctly 
 evaluates correctly 

 
OR 

 
Alternative Solution 

( ) ( ) ( ) ( )

( )( ) ( )( )

( )

4 4
1008 1008

0 0

4
1008

0

1009 4

0

1cos 2 sin 2 2sin 2 cos 2
2

1 cos 2 cos 2
2

cos 21
2 1009

    

                                     

                                    

                        

x x dx x x dx

d x x dx
dx

x

π π

π

π

= − −

= −

 
= −  

 

∫ ∫

∫

( )

[ ]

1009 10091 cos cos 0
2018 2

1 10 1
2018 2018

            

                                        

π  = − −    

= − − =

 

Specific behaviours 
 identifies ( )sin 2x  as part of the derivative of ( )cos 2x  

 uses the factor 1
2

−  to express the definite integral 

 anti-differentiates correctly using the next highest power 
 evaluates correctly 
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Question 6  (5 marks) 
 

(a) Given that 
( )( )

2
1 1 1 1

    a b
x x x x

= +
+ − − +

, determine the values for a and b. (2 marks) 

 
Solution 

( ) ( )
( )( )

( ) ( )
( )( )

1 1
1 1 1 1 1 1

    
         

a x b x a b x a ba b
x x x x x x

+ + − + + −
+ = =

− + + − + −
 

 
Hence equating co-efficients we obtain  0

2
a b
a b
+ =
− =

  i.e. 1, 1  a b= = − . 

Specific behaviours 
 obtains the numerator correctly in simplifying the algebraic fractions  
 determines the values for a and b correctly 

 
 

(b) Hence determine 2

1
1

dx
x −∫ . (3 marks) 

 
Solution 

( )( )2

1 1 2
1 2 1 1

1 1 1
2 1 1
1 ln 1 ln 1
2
1 1ln
2 1

     

                     

                        

                       

dx dx
x x x

dx
x x

x x c

x c
x

=
− + −

 = − − + 

=  − − +  + 

−
= +

+

∫ ∫

∫
 

Specific behaviours 
 writes the integral in terms of the partial fractions correctly 
 anti-differentiates correctly 
 uses an integration constant 

 
  



MATHEMATICS SPECIALIST 10 CALCULATOR-FREE 
 

 

Question 7  (6 marks) 
 
(a) Solve the equation 3 1 0z + =  giving solutions in polar form rcisθ . (3 marks) 
 

Solution 
( )3 1z cis π= − =  

2
3

    kz cis π π+ ∴ =  
 

 where 0,1,2k =   

0 3
  z cis π ∴ =  

 
 , ( )1 1   z cis π= = − , 2

5
3 3

   z cis cisπ π   = = −   
   

 

i.e.  ( ), ,
3 3

z cis cis cisπ ππ   = −   
   

     

Specific behaviours 
 expresses 3z  as ( )cis π   

 states the first root in correct polar form for 0k =   

 states the other 2 roots correctly using the argument separation 2
3
π   

 
 
It can be shown that ( ) 5 4 3 22 5 2 5P z z z z z z= − + + − +  can be written in the form  
 
( ) ( ) ( )3 1P z z Q z= + . 

 
(b) Determine ( )Q z . (1 mark) 

Solution 
( )

( ) ( )
( )( )

5 4 3 2

3 2 2

3 2

2 5 2 5

2 5 1 2 5

1 2 5

  

           

         

P z z z z z z

z z z z z

z z z

= − + + − +

= − + + − +

= + − +

 

Hence ( ) 2 2 5Q z z z= − + . 
Specific behaviours 

 determines ( )Q z  correctly 
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(c) Hence solve the equation 5 4 3 22 5 2 5 0z z z z z− + + − + =  giving all solutions in Cartesian 
form a bi+ . (2 marks) 

 
Solution 

( )( )2 32 5 1 0    z z z∴ − + + =   i.e. Solve 2 2 5 0z z− + =   or  3 1 0z + =   

i.e. ( )21 4 0z − + =   or  3 1z = −   

i.e. ( ) ( )1 2 1 2 0z i z i− + − − =         or  1, ,
3 3

  z cis cisπ π   = − −   
   

  

i.e. 1 3 1 31 2 , 1 2 , 1, ,
2 2 2 2

      z i i i i= + − − + −   

i.e. 1 31 2 , 1,
2 2

    z i i= ± − ±  

Specific behaviours 
 states 1 2z i= ±  as solutions 

 states 1 3
2 2

z i= ±  as solutions 
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Question 8  (5 marks) 
 
A parallelepiped is a prism where each face is a parallelogram. Let OAPB  be the parallelogram 
formed by the horizontal sides a OA=





 and b OB=




 where 
 

3
6
0

a
 
 =  
 
 



 and 
8
2
0

 
 

b
− 
 =  
 
 



. 

The third side that forms the parallelepiped is c OC=




 where 
1

2
5

 
 

c
− 

 =  
 
 



. 

 
 
 
Let  θ =  the size of AOB∠   

 φ =  the angle between OC


 and the positive z  axis 
 
(a) Determine × .a b

 

 (2 marks) 
 

Solution 
( ) ( )
( ) ( )
( ) ( )

6 0 0 23 8 0
6 2 0 8 3 0 0
0 0 543 2 6 8

 
             

 
a b

− −     
      = × = − − =      

      − −      

×
 

 

Specific behaviours 
 uses the correct form for each component for the cross product  
 evaluates each component correctly 
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The volume of any prism can be found by considering the formula ( )    Volume Area Base h= × ,  

where h =  the perpendicular height of the prism. 
 
It is also true that sin  a b a b θ× =

   

. 
 
(b) Explain why ( )c a b×

  

  will determine the volume of the parallelepiped.  (2 marks) 
 

Solution 
From ( )    Volume Area Base h= ×  

Area(OAPB ) ( )( )12 sin
2

   OA OB a bθ= × = ×
 

  

Perpendicular height ( )cosh OC φ=   
Note that a b×

 

 is parallel to the z-axis hence the angle between c


 and a b×
 

 is also 
φ . 
Hence volume 

( )
cos cos

.

     
                                  
V c a b c a b

c a b

φ φ= × = ×

= ×
     



  

. i.e. a dot product 

Since the value cosφ  may be less than zero we consider the absolute value of this 
dot product. i.e. ( )V c a b= ×

  

    
Specific behaviours 

 justifies that a b×
 

 determines the area of the parallelogram base 

 justifies that the perpendicular height cosh c φ=


  
 
 
(c) Hence determine the exact volume of the parallelepiped.  (1 mark) 
 

Solution 

Using ( ) ( ) ( ) ( )
1 0
2 0 1 0 2 0 5 54 270
5 54

V c a b cubic units
−   
   = × = = − + + =   
   
   

 

  

 
                

 
 

Specific behaviours 
 evaluates the dot product correctly 
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Question 9  (7 marks) 
 
(a) By using an appropriate trigonometric identity, simplify in terms of u, the expression 

2 2 4x x− +  where ( )3 tan 1x u= + .  (2 marks) 
 

Solution 

( ) ( )

( )

2
2

2

2

2

2

2 4 3 tan 1 2 3 tan 1 4

3tan 2 3 tan 1 2 3 tan 2 4
3tan 3

3 tan 1

3sec

  

                  
                  
                  

                  

x x u u

u u u
u

u

u

− + = + − + +

= + + − − +

= +

= +

=

 

Specific behaviours 
 expands correctly to obtain 23 tan 3u +  
 uses the trigonometric identity correctly to simplify to 23sec u  

 
 

(b) Hence evaluate 
( )

2

3
21 22 4

dx

x x− +
∫  exactly. (5 marks) 

 
Solution 

( )

( ) ( )

2 2

2 2 26 6 6

3 3 3
2 21 0 0 02 2

1, 0

3 tan 1 3 sec . . 3 sec .

2,
6

3 sec . 3 sec .
3sec3 3 sec2 4 3sec

x u x

dxUsing x u u i e dx u du
du

u

dx u du u du du
uux x u

π π π

π
= = =

= + ∴ = =

=

∴ = = =
− +

∫ ∫ ∫ ∫

When     and  

                 

 

                 

                        

( )

6

0

6

0

cos
3

sin 1 1 1 10
3 3 2 3 6

u du

u

π

π

=

   = = − =     

∫        

                                         

 

Specific behaviours 
 obtains dx  correctly in terms of du   
 changes the limits correctly in terms of u   
 simplifies the integrand correctly in terms of u  using the expression from part (a) 
 anti-differentiates correctly 
 evaluates correctly 
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