PHYSICS
ATAR COURSE YEAR 12
FORMULAE AND DATA BOOKLET
2019
Note: the variable \(t \) refers to the 'time taken', sometimes referred to as the 'change in time' or \(\Delta t \).

Gravity and motion

Average velocity
\[
v_{av} = \frac{s}{t}
\]

Equations of motion
\[
v = u + at \quad s = ut + \frac{1}{2} at^2 \quad v^2 = u^2 + 2as
\]
\[
p = mv
\]

Force
\[
F_{net} = ma
\]

Weight force
\[
F = mg
\]

Kinetic energy
\[
E_k = \frac{1}{2} mv^2
\]

Gravitational potential energy
\[
E_p = mg \Delta h
\]

Work done
\[
W = Fs = \Delta E
\]

Equations of circular motion
\[
v = \frac{2\pi r}{T} \quad a_c = \frac{v^2}{r} \quad F_c = ma_c = \frac{mv^2}{r}
\]

Newton’s law of universal gravitation
\[
F = G \frac{m_1 m_2}{r^2}
\]

Kepler’s 3rd law
\[
T^2 = \frac{4\pi^2}{GM} r^3
\]

Gravitational field strength
\[
g = G \frac{M}{r^2}
\]

Moment of a force (force at angle \(\theta \) to lever arm)
\[
\tau = r F \sin \theta
\]

Wave particle duality and the quantum theory

Wave period
\[
T = \frac{1}{f}
\]

Wave equation
\[
c = f\lambda
\]

Energy of photon
\[
E = hf
\]

Energy transitions
\[
\Delta E = E_2 - E_1 = hf
\]

Photoelectric effect
\[
E_k = hf - W
\]

De Broglie wavelength
\[
\lambda = \frac{h}{p}
\]
Electromagnetism

Coulomb's law
\[F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \]

Electric field strength
\[E = \frac{F}{q} = \frac{V}{d} \]

Magnetic field strength
\[B = \frac{\mu_0 I}{2\pi r} \]

Magnetic force on a charged particle
\[F = q \, v \, B \text{ where } v \perp B \]

Magnetic force on a current-carrying conductor
\[F = I \, \ell \, B \text{ where } \ell \perp B \]

Particle motion in a magnetic field
\[r = \frac{m}{q} \, \frac{v}{B} \]

Torque on a coil
\[\tau = r \, F \]

Magnetic flux
\[\Phi = B \, A \perp \]

Electromagnetic induction
induced emf: \(\varepsilon = \ell \, v \, B \) where \(v \perp B \)
induced emf: \(\varepsilon = -N \frac{\Delta (\Phi_2 - \Phi_1)}{t} = -N \frac{\Delta \Phi}{t} = -N \frac{\Delta (BA_\perp)}{t} \)

AC generator emf
\[\varepsilon_{\text{max}} = 2N\ell v B = 2\pi NBA_\perp f \]
\[\varepsilon_{\text{rms}} = \frac{\varepsilon_{\text{max}}}{\sqrt{2}} \]

Ohm's law
\[V = IR \]

Electric current
\[I = \frac{q}{t} \]

Work and energy
\[W = Vq \]

Ideal transformer turns ratio
\[\frac{V_p}{V_s} = \frac{N_p}{N_s} \]

Power
\[P = VI \]

Special relativity

Relativistic effects
\[\ell = \ell_0 \sqrt{1 - \frac{v^2}{c^2}} \]
\[t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}} \]
\[u = \frac{v + u'}{1 + \frac{uu'}{c^2}} \]
\[u' = \frac{u - v}{1 - \frac{uu'}{c^2}} \]

Relativistic momentum
\[p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} \]

Mass-energy equivalence
\[E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} \]

Rest energy
\[E = mc^2 \]

See next page
The Standard Model

Elementary particles

<table>
<thead>
<tr>
<th>Mass</th>
<th>Charge</th>
<th>Lepton number</th>
</tr>
</thead>
<tbody>
<tr>
<td>~2.3 MeV/c^2</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>~1.275 GeV/c^2</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>~173.07 GeV/c^2</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>~126 GeV/c^2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Quarks

<table>
<thead>
<tr>
<th>Mass</th>
<th>Charge</th>
<th>Lepton number</th>
</tr>
</thead>
<tbody>
<tr>
<td>~4.8 MeV/c^2</td>
<td>1/3</td>
<td>-1/3</td>
</tr>
<tr>
<td>~95 MeV/c^2</td>
<td>1/3</td>
<td>-1/3</td>
</tr>
<tr>
<td>~4.18 GeV/c^2</td>
<td>1/3</td>
<td>-1/3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Leptons

<table>
<thead>
<tr>
<th>Mass</th>
<th>Charge</th>
<th>Lepton number</th>
</tr>
</thead>
<tbody>
<tr>
<td><2.2 eV/c^2</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td><0.17 MeV/c^2</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td><15.5 MeV/c^2</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>

Gauge bosons

<table>
<thead>
<tr>
<th>Mass</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>105.7 MeV/c^2</td>
<td>-1</td>
</tr>
<tr>
<td>1.777 GeV/c^2</td>
<td>+1</td>
</tr>
<tr>
<td>91.2 GeV/c^2</td>
<td>0</td>
</tr>
<tr>
<td>80.4 GeV/c^2</td>
<td>±1</td>
</tr>
</tbody>
</table>

Electromagnetic spectrum

<table>
<thead>
<tr>
<th>λ(m)</th>
<th>10^-2</th>
<th>10^-1</th>
<th>10^-2</th>
<th>10^-3</th>
<th>10^-4</th>
<th>10^-5</th>
<th>10^-6</th>
<th>10^-7</th>
<th>10^-8</th>
<th>10^-9</th>
<th>10^-10</th>
<th>10^-11</th>
<th>10^-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of spectrum</td>
<td>radio frequencies</td>
<td>microwaves</td>
<td>infrared radiation</td>
<td>visible</td>
<td>ultraviolet radiation</td>
<td>X-rays</td>
<td>gamma rays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f(Hz)</th>
<th>10^6</th>
<th>10^7</th>
<th>10^8</th>
<th>10^9</th>
<th>10^10</th>
<th>10^11</th>
<th>10^12</th>
<th>10^13</th>
<th>10^14</th>
<th>10^15</th>
<th>10^16</th>
<th>10^17</th>
<th>10^18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>

Note: shaded areas represent regions of overlap.
Physical data

Mean acceleration due to gravity on the Earth: \(g = 9.80 \text{ m s}^{-2} \)

Mean acceleration due to gravity on the Moon: \(g_M = 1.62 \text{ m s}^{-2} \)

Mean radius of the Earth: \(R_E = 6.37 \times 10^6 \text{ m} \)

Mass of the Earth: \(M_E = 5.97 \times 10^{24} \text{ kg} \)

Mean radius of the Sun: \(R_S = 6.96 \times 10^8 \text{ m} \)

Mass of the Sun: \(M_S = 1.99 \times 10^{30} \text{ kg} \)

Mean radius of the Moon: \(R_M = 1.74 \times 10^6 \text{ m} \)

Mass of the Moon: \(M_M = 7.35 \times 10^{22} \text{ kg} \)

Mean Earth-Moon distance: \(= 3.84 \times 10^8 \text{ m} \)

Mean Earth-Sun distance: \(= 1.50 \times 10^{11} \text{ m} \)

Mass (at rest) of electron: \(m_e = 9.11 \times 10^{-31} \text{ kg} \)

Mass (at rest) of proton: \(m_p = 1.67 \times 10^{-27} \text{ kg} \)

Tonne: \(1 \text{ t} = 10^3 \text{ kg} \)

Physical constants

Speed of light in vacuum or air: \(c = 3.00 \times 10^8 \text{ m s}^{-1} \)

Electron charge: \(e = -1.60 \times 10^{-19} \text{ C} \)

Planck constant: \(\hbar = 6.63 \times 10^{-34} \text{ J s} \)

Newtonian constant of gravitation: \(G = 6.67 \times 10^{-11} \text{ N m}^2 \text{kg}^{-2} \)

Electric constant: \(\varepsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1} \)

Magnetic constant: \(\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2} = 1.26 \times 10^{-6} \text{ N A}^{-2} \)

Conversions

Electron volt: \(1 \text{ eV} = 1.60 \times 10^{-19} \text{ J} \)

Light year: \(1 \text{ ly} = 9.46 \times 10^{12} \text{ km} \)

Megaparsec: \(1 \text{ Mpc} = 3.09 \times 10^{19} \text{ km} = 3.26 \times 10^6 \text{ ly} \)
Prefixes of the metric system

<table>
<thead>
<tr>
<th>Factor</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Factor</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{12}</td>
<td>tera</td>
<td>T</td>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^9</td>
<td>giga</td>
<td>G</td>
<td>10^{-6}</td>
<td>micro</td>
<td>µ</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
</tbody>
</table>

Mathematical expressions

Quadratic equations

Given $ax^2 + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Triangles

The following expressions apply to the triangle ABC as shown:

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[
a = \sqrt{b^2 + c^2 - 2bc \cos A}
\]
This page has been left blank intentionally
ACKNOWLEDGEMENTS

Elementary particles

Used under Creative Commons Attribution 3.0 Unported licence.