




# CHEMISTRY ATAR COURSE

**DATA BOOKLET** 

2022

## **Table of contents**

| Periodic table of the elements             | 3   |
|--------------------------------------------|-----|
| Formulae                                   | 4   |
| Units                                      | 4   |
| Constants                                  | 4   |
| Solubility rules for ionic solids in water | 4   |
| Colours of selected substances             | 5   |
| α-amino acids                              | 6–7 |
| Standard reduction potentials at 25 °C     | 8   |

#### Copyright

© School Curriculum and Standards Authority, 2021

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority (the Authority) is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons <u>Attribution 4.0 International (CC BY)</u> licence.

An Acknowledgements variation document is available on the Authority website.

This document is valid for teaching and examining until 31 December 2022.

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107

| ູທຸ          |
|--------------|
| Έ            |
| e            |
| Č            |
| ב            |
| <u>•</u>     |
| Φ            |
| Φ            |
| حَ           |
| +            |
| 4            |
|              |
| 0            |
| <u>e</u> 0   |
| Φ            |
| <u> </u>     |
| <u> </u>     |
| <u> </u>     |
| <u> </u>     |
| c table      |
| c table      |
| riodic table |
| iodic table  |

| 18 2 2 Perium 4.003 | 10<br>Neon<br>20.18<br>Ar<br>argon<br>39.95                  | 36<br>krypton<br>83.80<br>54<br>Xe<br>xenon<br>131.3              | Radon 118 Oggoganesson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|--------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 71                  | 19.00 PT 17 CHOING CHOMING 35.45                             | 35 Br bromine 79.90 53 I cidine 126.9                             | At astatine 117 TS tennessine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9                   | 0 oxygen<br>16.00<br><b>Sulfur</b><br>32.06                  | 34<br>Selenium<br>78.97<br>52<br>Te<br>tellurium<br>127.6         | Po<br>polonium<br>116<br>LV<br>livermorium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15                  | 7 nitrogen 14.01 15 phosphorus 30.97                         | 33 <b>AS</b> arsenic 74.92 51 Sh antimony 121.8                   | Bi<br>bismuth<br>209.0<br>115<br>MC<br>moscovium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4                   | Carbon 12.01 14 14 15.01 28.09                               | 32<br><b>Ge</b><br>germanium<br>72.63<br>50<br><b>Sn</b><br>tin   | Pb<br>lead<br>207.2<br>114<br>Fe<br>flerovium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13                  | 5<br>boron<br>10.81<br>13<br><b>AC</b><br>aluminium<br>26.98 | 31<br>Gallium<br>69.72<br>49<br>In<br>indium<br>114.8             | thallium 204.4 113 Nh nihonium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12                  |                                                              | 30 Zinc zinc 65.38 48 Cd cadmium 112.4                            | ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 #### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 #### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 #### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 #### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ### 80 ######## |
| <del>_</del>        |                                                              | 29<br>copper<br>63.55<br>47<br><b>Ag</b><br>silver<br>107.9       | Au<br>gold<br>197.0<br>111<br>Rg<br>roentgenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10                  |                                                              | 28 nickel 58.69 46 Pd palladium 106.4                             | Pt platinum 195.1 110 DS darmstadtium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| O                   |                                                              | Cochalt 58.93 45 Hrodium 102.9                                    | Ir<br>iridium<br>192.2<br>109<br>Mt<br>meitnerium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ∞                   |                                                              | 26 iron 55.85 44 <b>RU</b> ruthenium 1011.1                       | OS<br>osmium<br>190.2<br>108<br><b>HS</b><br>hassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                   |                                                              | Mn<br>manganese<br>54.94<br>43<br>Tc<br>technetium                | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ø                   |                                                              | Cr<br>chromium<br>52.00<br>42<br><b>Mo</b><br>molybdenum<br>95.95 | tungsten<br>183.8<br>106<br><b>Sg</b><br>seaborgium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ŋ                   |                                                              | 23<br>Vanadium<br>50.94<br>41<br>Nb<br>niobium<br>92.91           | 73 tantalum 180.9 105 Ob dubnium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4                   |                                                              | 22<br>titanium<br>47.87<br>40<br><b>Zr</b><br>zirconium<br>91.22  | 72<br>Hafmium<br>178.5<br>104<br>Rutherfordium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ო                   |                                                              | 21<br>Scandium<br>44.96<br>39<br>Yttrium<br>88.91                 | 57–71 lathanoids 89–103 actinoids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7                   | Beberyllium 9.012 12 Mg magnesium 24.31                      | 20<br>Caalcium<br>40.08<br>38<br>Sr<br>strontium<br>87.62         | 56 <b>Ba</b> barium 137.3 88 Ra radium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.008               | 11 (1.5) (2.99) (22.99)                                      | 19                                                                | 55<br>Caesium<br>132.9<br>87<br>Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| (ey:          | 22        | 28       | 29           | 09        | 61         | 62        | 63        | 64         | 65        | 99          | 29          | 89      | 69          | 02        |  |
|---------------|-----------|----------|--------------|-----------|------------|-----------|-----------|------------|-----------|-------------|-------------|---------|-------------|-----------|--|
|               | ב<br>ב    | ٥        | ጟ            | 2         | E<br>E     | SE        | Д         | 5          | <u>Q</u>  | 2           | 유           | Ļ       | =           | Q<br>L    |  |
|               | lanthanum | cerium   | praseodymium | neodymium | promethium | samarium  | europium  | gadolinium | terbium   | dysprosium  | holmium     | erbium  | thulium     | ytterbium |  |
| Atomic number | 138.9     | 140.1    | 140.9        | 144.2     |            | 150.4     | 152.0     | 157.3      | 158.9     | 162.5       | 164.9       | 167.3   | 168.9       | 173.0     |  |
| Symbol        | 68        | 06       | 91           | 92        | 93         | 94        | 92        | 96         | 26        | 86          | 66          | 100     | 101         | 102       |  |
| Name          | ΔC        | <u>د</u> | <u>Б</u>     | =         | 2          | <b>D</b>  | Δm        | C          | Z<br>X    | ۲           | <i>У</i> ,  | Е       | \<br>≥      | Z         |  |
| Standard      | actinium  | thorium  | protactinium | uranium   | neptunium  | plutonium | americium | curium     | berkelium | californium | einsteinium | fermium | mendelevium | nobelium  |  |
| atomic weight |           | 232.0    | 231.0        | 238.0     |            |           |           |            |           |             |             |         |             |           |  |

71 | Lu | lutetium | 175.0 | 103 | Lr | Lr | Lr | lawrencium |

[Data source: The International Union of Pure and Applied Chemistry Periodic Table of the Elements (2018)]

#### **Formulae**

Number of moles  $n = \frac{m}{M} = \frac{\text{mass}}{\text{molar mass}}$ 

Number of moles of solute n = cVNumber of moles of a gas at STP  $n = \frac{V}{22.71}$ 

Ideal gas law PV = nRT

Parts per million  $ppm = \frac{mass of solute (mg)}{mass of solution (kg)}$ 

pH of a solution  $pH = -\log_{10} [H^{+}]$ 

## **Units**

Volumes are given in the units of litres (L), or millilitres (mL)

Temperatures are given in the units of degrees Celsius (°C) or kelvin (K)

It may be assumed that 0.0 °C = 273.15 K

Energy changes are given in kilojoules (kJ)

Pressures are given in kilopascals (kPa)

Solution concentrations are given in the units moles per litre (mol L-1),

grams per litre (g L-1) or parts per million (ppm)

#### **Constants**

Universal gas constant, R = 8.314 J K<sup>-1</sup> mol<sup>-1</sup>

Avogadro constant, N = 6.022×10<sup>23</sup> mol<sup>-1</sup>

Volume of 1.00 mol of an ideal gas at 0.0 °C and 100.0 kPa is 22.71 L

STP is 0.0 °C and 100.0 kPa

Equilibrium constant for water at 25 °C, K<sub>w</sub> = 1.00×10<sup>-14</sup>

# Solubility rules for ionic solids in water

## Soluble in water

| Soluble        | Exceptions                                                |                                                     |
|----------------|-----------------------------------------------------------|-----------------------------------------------------|
|                | Insoluble                                                 | Slightly soluble                                    |
| Most chlorides | AgCl                                                      | PbCl <sub>2</sub>                                   |
| Most bromides  | AgBr                                                      | PbBr <sub>2</sub>                                   |
| Most iodides   | AgI, PbI <sub>2</sub>                                     |                                                     |
| All nitrates   | No excep                                                  | ations                                              |
| All ethanoates | 140 0200                                                  | MONS                                                |
| Most sulfates  | SrSO <sub>4</sub> , BaSO <sub>4</sub> , PbSO <sub>4</sub> | CaSO <sub>4</sub> , Ag <sub>2</sub> SO <sub>4</sub> |

### Insoluble in water

| Insoluble       | Exceptions                                                                                                         |                                           |
|-----------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                 | Soluble                                                                                                            | Slightly soluble                          |
| Most hydroxides | NaOH, KOH, Ba(OH) <sub>2</sub><br>NH <sub>4</sub> OH*, AgOH**                                                      | Ca(OH) <sub>2</sub> , Sr(OH) <sub>2</sub> |
| Most carbonates | Na <sub>2</sub> CO <sub>3</sub> , K <sub>2</sub> CO <sub>3</sub> , (NH <sub>4</sub> ) <sub>2</sub> CO <sub>3</sub> |                                           |
| Most phosphates | Na <sub>3</sub> PO <sub>4</sub> , K <sub>3</sub> PO <sub>4</sub> , (NH <sub>4</sub> ) <sub>3</sub> PO <sub>4</sub> |                                           |
| Most sulfides   | Na <sub>2</sub> S, K <sub>2</sub> S, (NH <sub>4</sub> ) <sub>2</sub> S                                             |                                           |

\* NH<sub>3</sub> dissolves in water to form both NH<sub>3</sub> (aq) and NH<sub>4</sub><sup>+</sup>(aq)/OH<sup>-</sup>(aq)

\*\* Ag<sup>+</sup>(aq) reacts with OH<sup>-</sup>(aq) to form insoluble Ag<sub>2</sub>O

Soluble = more than 0.1 mole dissolves per litre

Slightly soluble = between 0.01 and 0.1 mole dissolves per litre

Insoluble = less than 0.01 mole dissolves per litre

# **Colours of selected substances**

In general, ionic solids have the same colour as that of any coloured ion they contain. Two colourless ions in general produce a white solid. Selected exceptions to these two basic rules are noted below.

| Ionic Solid          | Colour      |
|----------------------|-------------|
| copper(II) carbonate | green       |
| copper(II) chloride  | green       |
| copper(II) oxide     | black       |
| copper(II) sulfide   | black       |
| lead(II) iodide      | yellow      |
| lead(II) sulfide     | grey        |
| manganese(IV) oxide  | black       |
| silver carbonate     | yellow      |
| silver iodide        | pale yellow |
| silver oxide         | brown       |
| silver sulfide       | black       |

#### Other coloured substances

Most gases and liquids are colourless, and most metals are silvery or grey. Selected exceptions to these basic rules are noted below.

| Substance           | Colour      |
|---------------------|-------------|
| copper(s)           | salmon pink |
| gold(s)             | yellow      |
| nitrogen dioxide(g) | brown       |
| sulfur(s)           | yellow      |

# **Coloured halogens**

| Halogen             | Colour of free element |
|---------------------|------------------------|
| F <sub>2</sub> (g)  | yellow                 |
| Cl <sub>2</sub> (g) | greenish-yellow        |
| $Br_2(\ell)$        | red                    |
| $I_2(g)$            | purple                 |

| Halogen              | Colour of halogen in aqueous solution |
|----------------------|---------------------------------------|
| Cl <sub>2</sub> (aq) | pale yellow                           |
| Br <sub>2</sub> (aq) | orange                                |
| I <sub>2</sub> (aq)  | brown                                 |

| Halogen         | Colour of halogen in organic solvent |
|-----------------|--------------------------------------|
| Br <sub>2</sub> | red                                  |
| I <sub>2</sub>  | purple                               |

# Coloured ions in aqueous solution

| Cation           | Colour     |
|------------------|------------|
| Cr³+             | deep green |
| Co <sup>2+</sup> | pink       |
| Cu <sup>2+</sup> | blue       |
| Fe <sup>2+</sup> | pale green |
| Fe <sup>3+</sup> | pale brown |
| Mn <sup>2+</sup> | pale pink  |
| Ni <sup>2+</sup> | green      |

| Anion                                        | Colour |
|----------------------------------------------|--------|
| CrO <sub>4</sub> <sup>2-</sup>               | yellow |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> | orange |
| MnO <sub>4</sub> -                           | purple |

| Name          | Symbol | Structure                                                                                                           |
|---------------|--------|---------------------------------------------------------------------------------------------------------------------|
| alanine       | Ala    | CH <sub>3</sub>                                                                                                     |
|               |        | H <sub>2</sub> N — CH — COOH                                                                                        |
| arginine      | Arg    | NH<br>                                                                                                              |
|               |        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                         |
| asparagine    | Asn    | $\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ $                                                    |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                         |
| aspartic acid | Asp    | CH <sub>2</sub> — COOH                                                                                              |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                         |
| cysteine      | Cys    | CH <sub>2</sub> — SH                                                                                                |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                         |
| glutamine     | Gln    | $\begin{array}{c} O \\ \parallel \\ CH_2 -\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                         |
| glutamic acid | Glu    | CH <sub>2</sub> — CH <sub>2</sub> — COOH                                                                            |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                         |
| glycine       | Gly    | H <sub>2</sub> N — CH <sub>2</sub> — COOH                                                                           |
| histidine     | His    | CH <sub>2</sub> —N                                                                                                  |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                         |
| isoleucine    | Ile    | $\begin{array}{c} CH_3 \longrightarrow CH \longrightarrow CH_2 \longrightarrow CH_3 \\   \end{array}$               |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                         |

| Name          | Symbol | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| leucine       | Leu    | $\begin{array}{c} CH_3 {\longleftarrow} CH {\longleftarrow} CH_3 \\   \\ CH_2 \\   \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |        | H <sub>2</sub> N — CH — COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lysine        | Lys    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |        | H <sub>2</sub> N — CH — COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| methionine    | Met    | $\begin{array}{c} \operatorname{CH_2} \longrightarrow \operatorname{CH_2} \longrightarrow \operatorname{S} \longrightarrow \operatorname{CH_3} \\   \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |        | H <sub>2</sub> N — CH — COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| phenylalanine | Phe    | $\begin{array}{c} \operatorname{CH_2-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-\hspace{-0.1cm}-$ |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| proline       | Pro    | H COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| serine        | Ser    | CH <sub>2</sub> ——OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| threonine     | Thr    | CH <sub>3</sub> — CH — OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tryptophan    | Trp    | H<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |        | $CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tyrosine      | Tyr    | CH <sub>2</sub> —OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |        | H <sub>2</sub> N — CH— COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| valine        | Val    | CH <sub>3</sub> — CH — CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |        | $\begin{array}{c} \operatorname{CH}_3 \longrightarrow \operatorname{CH} \longrightarrow \operatorname{CH}_3 \\   \\ \operatorname{H}_2 \operatorname{N} \longrightarrow \operatorname{CH} \longrightarrow \operatorname{COOH} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Half-reaction                                                             |                                                              | E°(volts)     |
|---------------------------------------------------------------------------|--------------------------------------------------------------|---------------|
| $F_2(g) + 2 e^- \rightleftharpoons$                                       | 2 F <sup>-</sup> (aq)                                        | + 2.89        |
| $H_2O_2(aq) + 2 H^+(aq) + 2 e^- \rightleftharpoons$                       | 2 H <sub>2</sub> O(ℓ)                                        | + 1.76        |
| $PbO_{2}(s) + SO_{4}^{2-}(aq) + 4 H^{+}(aq) + 2 e^{-} \rightleftharpoons$ | $PbSO_4(s) + 2\;H_2O(\ell)$                                  | + 1.69        |
| 2 HCℓO(aq) + 2 H⁺(aq) + 2 e⁻ <i>⇌</i>                                     | $C\ell_{2}(g) + 2 H_{2}O(\ell)$                              | + 1.63        |
| MnO <sub>4</sub> ⁻(aq) + 8 H⁺(aq) + 5 e⁻ <i>⇌</i>                         | $Mn^{2+}(aq) + 4 H_2O(\ell)$                                 | + 1.51        |
| Au³+(aq) + 3 e⁻ <i>⇌</i>                                                  | Au(s)                                                        | + 1.50        |
| HCℓO(aq) + H⁺(aq) + 2 e⁻ <i>⇌</i>                                         | $C\ell^-(aq) + H_2O(\ell)$                                   | + 1.49        |
| $PbO_2(s) + 4 H^+(aq) + 2 e^- \rightleftharpoons$                         | $Pb^{2+}(aq) + 2 H_2O(\ell)$                                 | + 1.46        |
| $C\ell_2(g) + 2 e^- \rightleftharpoons$                                   | 2 Cℓ⁻(aq)                                                    | + 1.36        |
| $Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \rightleftharpoons$                | $2 \text{ Cr}^{3+}(\text{aq}) + 7 \text{ H}_2\text{O}(\ell)$ | + 1.36        |
| $O_2(g) + 4 H^+(aq) + 4 e^- \rightleftharpoons$                           | 2 H <sub>2</sub> O( <i>l</i> )                               | + 1.23        |
| $Br_2(\ell) + 2 e^- \rightleftharpoons$                                   | 2 Br <sup>-</sup> (aq)                                       | + 1.08        |
| Ag⁺(aq) + e⁻ <i>⇌</i>                                                     | Ag(s)                                                        | + 0.80        |
| Fe³+(aq) + e⁻ <i>⇌</i>                                                    | Fe <sup>2+</sup> (aq)                                        | + 0.77        |
| $O_2(g) + 2 H^+(aq) + 2 e^- \rightleftharpoons$                           | $H_2O_2(aq)$                                                 | + 0.70        |
| $I_2(s) + 2 e^- \rightleftharpoons$                                       | 2 I <sup>-</sup> (aq)                                        | + 0.54        |
| $O_2(g) + 2 H_2O(\ell) + 4 e^- \rightleftharpoons$                        | 4 OH⁻(aq)                                                    | + 0.40        |
| Cu²+(aq) + 2 e⁻ <i>⇐</i>                                                  | Cu(s)                                                        | + 0.34        |
| S(s)+ 2 H⁺(aq) + 2 e⁻ <i>⇐</i>                                            | H <sub>2</sub> S(aq)                                         | + 0.17        |
| 2 H⁺(aq) + 2 e⁻ <i>⇐</i>                                                  | $H_2(g)$                                                     | 0 exactly     |
| Pb²+(aq) + 2 e⁻ <i>⇌</i>                                                  | Pb(s)                                                        | -0.13         |
| Sn²+(aq) + 2 e⁻ <i>⇐</i>                                                  | Sn(s)                                                        | -0.14         |
| Ni²⁺(aq) + 2 e⁻ <i>⇐</i>                                                  | Ni(s)                                                        | -0.24         |
| $Co^{2+}(aq) + 2 e^{-} \rightleftharpoons$                                | Co(s)                                                        | -0.28         |
| $PbSO_4(s) + 2 e^- \rightleftharpoons$                                    | $Pb(s) + SO_4^{2-}(aq)$                                      | -0.36         |
| $Cd^{2+}(aq) + 2 e^{-} \rightleftharpoons$                                | Cd(s)                                                        | -0.40         |
| $2 CO_{2}(g) + 2 H^{+}(aq) + 2 e^{-} \rightleftharpoons$                  | $H_2C_2O_4(aq)$                                              | -0.43         |
| $Fe^{2+}(aq) + 2e^{-} \rightleftharpoons$                                 | Fe(s)                                                        | -0.44         |
| Cr³+(aq) + 3 e⁻ <i>←</i>                                                  | Cr(s)                                                        | -0.74         |
| Zn²⁺(aq) + 2 e⁻ <i>⇌</i>                                                  | Zn(s)                                                        | - 0.76        |
| $2 H_2O(\ell) + 2 e^- \rightleftharpoons$                                 | $H_2(g) + 2 OH^-(aq)$                                        | -0.83         |
| Mn²+(aq) + 2 e⁻ <i>⇌</i>                                                  | Mn(s)                                                        | <b>–</b> 1.18 |
| Aℓ³⁺(aq) + 3 e⁻ <i>⇌</i>                                                  | $A\ell(s)$                                                   | <b>–</b> 1.68 |
| Mg²+(aq) + 2 e⁻ <i>⇌</i>                                                  | Mg(s)                                                        | <b>- 2.36</b> |
| Na⁺(aq) + e⁻ <i>⇌</i>                                                     | . ,                                                          | <b>- 2.71</b> |
| Ca <sup>2+</sup> (aq) + 2 e <sup>-</sup> ⇌                                |                                                              | <b>- 2.87</b> |
| Sr <sup>2+</sup> (aq) + 2 e <sup>-</sup> ⇌                                |                                                              | - 2.90        |
| Ba <sup>2+</sup> (aq) + 2 e <sup>-</sup> ⇌                                |                                                              | <b>- 2.91</b> |
| K⁺(aq) + e⁻ <i>=</i>                                                      | K(s)                                                         | <b>−</b> 2.94 |

[Data source: Aylward, G.H., & Findlay, T. (2014). SI Chemical Data (7th ed.). Queensland: John Wiley & Sons Australia, Ltd.]