

ENGINEERING STUDIES ATAR COURSE

DATA BOOK

2025

This page has been left blank intentionally

CONTENT	PAGES
Core	
Base International System (SI) units	4
Derived SI units	4
SI prefixes	4
Common constant	4
Right triangular plane figures	5
Circles, cylinder and sphere figures	5
Density	5
Energy, work and power	5
Mechanisms	6
Efficiency	6
Selected materials properties (at 25 °C)	7
Specialist field: Mechanical	
Base International System (SI) units	8
Derived SI units	8
Common constant	8
Materials formulae	8
Statics formulae	9
Dynamics formulae	9
Second moment of area for materials cross sections (I_{xx})	10
Deflection of beams	11
Specialist field: Mechatronics	
Base International System (SI) units	12
Derived SI units	12
Laws and principles formulae	12
Diode and transistor models	14
Resistor colour codes	15
Sample microcontroller chip	15
Standard circuit symbols	16
Flow chart symbols	18

Base International System (SI) units

Physical quantity		SI units		
Name	Name Symbol		Symbol	
Length	L	metre	m	
Mass	m	kilogram	kg	
Time	t	second	S	

Derived SI units

Derived physical quantities		SI units		
Name	Symbol	Name	Symbol	
Area	A	square metre	m²	
Volume	V	cubic metre	m³	
Density	ρ	kilogram per cubic metre	kg m⁻³	
Energy	E	ioulo	J	
Work	W	joule		
Displacement	S	metre	m	
Distance	d	- metre		
Power	P	watt	W	
Speed	no symbol	matra nar accard	m s⁻¹	
Velocity (linear)	v	metre per second	m s '	
Angular displacement	θ	radian	rad	
Velocity (angular)	ω	radian per second	rad s⁻¹	
Force	F	newton	N	
Torque	τ	newton metre	N m	

SI prefixes

Prefixes	Abbreviations	Multipliers
Tera	Т	1012 = 1 000 000 000 000
Giga	G	109 = 1 000 000 000
Mega	M	106 = 1 000 000
Kilo	k	10 ³ = 1000
		10° = 1
Milli	m	$10^{-3} = 0.001$
Micro	μ	10 ⁻⁶ = 0.000 001
Nano	n	10 ⁻⁹ = 0.000 000 001
Pico	р	10 ⁻¹² = 0.000 000 000 001

Common constant

Item	Symbol	Value
Gravity	g	9.80 m s ⁻²

Right triangular plane figures

Parameter	Formulae		
Pythagoras' theorem C			
$a \longrightarrow b$	$a^2 + b^2 = c^2$		
	$\cos \theta = \frac{a}{L}$		
	n		
Angular relationships	$\sin \theta = \frac{o}{h}$		
	$\tan \theta = \frac{o}{-}$		
	а		

Circles, cylinder and sphere figures

Parameter	Formulae
Circumference (C) of a circle	$C = \pi d$
Area (A) of a circle	$A = \pi r^2$
Surface area (A) of open-ended cylinder	$A = \pi dh$
Surface area (A) of a sphere	$A = 4\pi r^2$
Volume (V) of a cylinder	$V = \pi r^2 h$
Volume (V) of a sphere	$V = \frac{4}{3}\pi r^3$

Density

Parameter	Formula		
Density ($ ho$)	$ \rho = \frac{m}{V} $		

Energy, work and power

Parameter	Formulae
Energy (E)	E = Pt
Gravitational potential energy (E_p)	$E_P = mg\Delta h$
Kinetic energy (E_k)	$E_K = \frac{1}{2} m v^2$
Work done (W)	$W = \Delta E$
Work (W) linear	$W = Fs = F\Delta x = F\left(x_f - x_i\right)$
Work (W) rotational	W = au heta
Power (P)	$P = \frac{\Delta E}{\Delta t} = \frac{W}{\Delta t}$
Power (P) linear	$P = \frac{Fs}{\Delta t} = \frac{F\Delta x}{\Delta t} = \frac{F\left(x_f - x_i\right)}{\Delta t} = Fv$
Power (P) rotational	$P = \frac{\tau\theta}{t} = \tau\omega = \tau \frac{(rpm)(2\pi)}{60}$

Mechanisms

Parameter	Formulae
Mechanical advantage (MA)	$MA = \frac{F_{load}}{F_{effort}}$
Velocity ratio (VR)	$VR = \frac{d_{effort}}{d_{load}}$
Ideal machine (100% efficient)	MA = VR
Pulley belt ratio (VR)	$VR = \frac{\emptyset_{follower}}{\emptyset_{driver}}$
Chain and sprocket ratio (VR)	$VR = rac{n^{\circ} teeth_{(follower)}}{n^{\circ} teeth_{(driver)}}$
Gear ratio (VR)	$n^{\circ} teeth_{(driver)}$
Compound gear or pulley ratio (VR) comprised of 3 or more gears or pulleys	$VR = \frac{F_1 F_2 F_3}{D_1 D_2 D_3} \dots$
Worm and worm wheel (VR)	$VR = \frac{n^{\circ} teeth_{(worm wheel)}}{1}$
Rack and pinion (VR)	$distance\ moved = \frac{n^{\circ}\ teeth\ pinion \times n^{\circ}\ revolutions}{n^{\circ}\ teeth\ per\ metre\ rack}$
Lead screw (VR)	
single start	$distance\ moved = pitch \times revolutions$
multiple start	$distance\ moved = n^{\circ}\ starts \times pitch \times revolutions$
Speed (linear translation)	$speed = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$
Speed (rotational to linear translation)	$speed = \frac{(rpm)(2\pi r)}{60}$
Speed of rotation (rpm)	$output speed (rpm) = \frac{input speed (rpm)}{VR}$
Torque (force perpendicular to lever arm)	$\tau = rF$

Efficiency

Parameter	Formula
Efficiency (η) %	$\eta = \frac{output}{input} \times 100\%$

Selected materials properties (at 25 °C)

Material	Density kg m ⁻³	Elastic (Young's) modulus kN mm ⁻²	Ultimate tensile strength N mm ⁻²	Yield stress N mm ⁻²	Ultimate shear stress N mm ⁻²	Electrical conductivity $\Omega^{-1} \text{ m}^{-1} \times 10^6$	Thermal conductivity W m ⁻¹ K ⁻¹
Aluminium	2710	70	150	95	%0	37.70	237
Copper	8930	112	210	70	is 7(S	59.50	401
Zinc	7130	108	200	13.80	JSS) (UT)	16.80	116
Wrought iron	7750	200			Assume ultimate shear stress (USS) is 70% of ultimate tensile strength (UTS)	10.30	80
					stre		
Structural steel	7850	200	470	250	lear s	13.00	46
Stainless steel	7600	200	860	502	te sh e ten	1.35	16
Cast iron	7200	120	180		ltima imat	10.30	80
					e u fult		
Brass	8740	90	190	50	o sum	16.70	109
Bronze	8800	105	467	282	As	7.25	60
						T	
Acrylic	1190	3.20	70.00	73.70			0.19
Polycarbonate	1200	2.39	64.20	62.50			0.22
ABS	1070	2.35	40.90	44.80			0.16
PLA	1250	2.37	58.80	30.00			0.04
PVC	1380	2.16	16.60	43.20			0.16
Polypropylene	930	1.67	29.20	31.70			0.16
Epoxy resin	1100	2.17	56				0.35
Polyester resin	1100	25.00	250				0.40
					T .		
Concrete	2400	30	40 (compressive)				0.80
Pine (along grain)	550	9	40				
Pure water	1000						
Sea water	1022						

Note: The values shown in the above chart are indicative of typical values for these materials and are to be only used for the purposes of this course.

Base International System (SI) units

Physical quantity		SI units	
Name	Symbol	Name	Symbol
Length	L	metre	m
Mass	m	kilogram	kg
Time	t	second	S

Derived SI units

Derived physical quantities		SI units	
Name	Symbol	Name	Symbol
Stress	σ	nagaal	Pa
Pressure	P	pascal	Га
Force	F	newton	N
Area	A	square metre	m²
Strain	3	dimensionless r	umber
Young's modulus	Young's modulus E	kilonewton per square millimetre	kN mm ⁻²
		gigapascal	GPa
Moment	M	newton metre	N m
Acceleration	а	metre per second squared	m s ⁻²
Velocity	v	metre per second	m s ⁻¹
Displacement	S	metre	m
Distance	d	Tillette	m
Maximum deflection	у	millimetre	mm
Second moment of area	I_{xx}	millimetre to the power of four	mm ⁴

Common constant

Item	Symbol	Value
Gravity	g	9.80 m s ⁻²

Materials formulae

Parameter	Formulae
Stress (σ)	$\sigma = \frac{F}{A}$
Pressure (P)	$P = \frac{F}{A}$
Strain (ε)	$\varepsilon = \frac{\Delta L}{L}$
Young's Modulus (E)	$E = \frac{\sigma}{\varepsilon}$
	$E = \frac{FL}{A\Delta L}$
Factor of Safety (FS)	$FS = \frac{\sigma_{UTS}}{\sigma_{safeworking}}$

Statics formulae

Parameter	Formulae
Moment (M) of a force	M = Fd
Equilibrium conditions – moments (<i>M</i>)	$\Sigma M = 0$
Note: CWM are positive	$\Sigma CWM = \Sigma ACWM$
Equilibrium conditions – horizontal forces (F_x)	$\Sigma F_{x} = 0$
Note: F_{right} are positive	$\Sigma F_{left} = \Sigma F_{right}$
Equilibrium conditions – vertical forces (F_y)	$\Sigma F_{y} = 0$
Note: F_{up} are positive	$\Sigma F_{up} = \Sigma F_{down}$
Where position of maximum bending moment (x) occurs along a UDL as measured from start of UDL	$x = \frac{y}{m}$

Dynamics formulae

Parameter	Formulae
Force (F)	F = ma
Acceleration (a)	$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i}$
Volcoity (1)	$v_f = v_i + a\Delta t$
Velocity (v)	$v_f^2 = v_i^2 + 2as$
Displacement (s)	$s = v_i \Delta t + \frac{1}{2} a \Delta t^2$

Second moment of area for materials cross sections ($I_{\rm xx}$)

Shapes	Dimensions	Second moment of area about centroid axis
Vertical rectangle solid section	x	$I_{xx} = \frac{bh^3}{12}$ $b = \text{base}$ $h = \text{height}$
Vertical rectangle hollow section	b_o h_o λ b_o b_o b_o b_o	$I_{xx} = \frac{b_o h_o^3}{12} - \frac{b_i h_i^3}{12}$ $b_o = \text{base (outside)}$ $h_o = \text{height (outside)}$ $b_i = \text{base (inside)}$ $h_i = \text{height (inside)}$
Round solid section	x ×	$I_{xx} = \frac{\pi D^4}{64}$ $D = \text{diameter}$
Circular tube section	$\mathbf{x} - \mathbf{D}_i$	$I_{xx} = \frac{\pi \left(D_o^4 - D_i^4\right)}{64}$ $D_o = \text{diameter (outside)}$ $D_i = \text{diameter (inside)}$

Deflection of beams

Beam configurations	Maximum deflection (y)
Cantilevered beam – single load at unsupported end	
$A \longrightarrow B$	$y = \frac{FL^3}{3EI_{xx}} \text{ at } B$
Cantilevered beam – universally distributed load	
$F_{UDL} = \omega L$	$y = \frac{F_{UDL}L^3}{8EI_{xx}} \text{ at } B$

Centrally loaded beam - simply supported at both ends

$$y = \frac{FL^3}{48EI_{xx}} \text{ at } C$$

Universally loaded beam - simply supported at both ends

$$y = \frac{5F_{UDL}L^3}{384EI_{xx}} \text{ at } C$$

Terms

E = elastic (Young's) modulus of the material of the beam

F = single vertical point load

 $F_{\text{\it UDL}}$ = product of ω and the length of the beam $I_{\text{\it xx}}$ = second moment of area of the beam section L = length of beam

 ω = uniformly distributed load per unit length

ENGINEERING STUDIES SPECIALIST FIELD MECHATRONICS

Base International System (SI) units

Physical quantity		SI units	
Name	Symbol	Name	Symbol
Current	I	ampere	А

Derived SI units

Derived physical quantities		SI units	
Name	Symbol	Name	Symbol
Charge	q	coulomb	С
Capacitance	C	farad	F
Voltage	V	volt	V
Resistance	R	ohm	Ω
Power	P	watt	W
Frequency	f	hertz	Hz

Laws and principles formulae

Parameter	Formulae
Charge (q)	q = It
Relationships between Ohm's law and power formula	
Voltage (V)	$V = IR = \frac{P}{I} = \sqrt{PR}$
Current (I)	$I = \frac{V}{R} = \frac{P}{V} = \sqrt{\frac{P}{R}}$
Resistance (R)	$R = \frac{V}{I} = \frac{P}{I^2} = \frac{V^2}{P}$
Power (P)	$P = VI = I^2 R = \frac{V^2}{R}$
Kirchhoff's voltage law	$\Sigma \Delta V = 0$
Kirchhoff's current law	$\Sigma I = 0$
Resistances (R) in series	$R_T = R_1 + R_2 + \dots$
Resistances (R) in parallel	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
Charge (q) capacitor	q = CV
Charge (q) capacitances in series	$q_T = q_1 = q_2 = \dots$
Charge (q) capacitances in parallel	$q_T = q_1 + q_2 + \dots$
Capacitances (C) in series	$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
Capacitances (C) in parallel	$C_T = C_1 + C_2 + \dots$

Laws and principles formulae (continued)

Parameter	Formulae
Current capacity (A h) cells and batteries	$Ah = \frac{Wh}{V}$
Cells and batteries in series	$\begin{split} \boldsymbol{V}_{T} &= \boldsymbol{V}_{1} + \boldsymbol{V}_{2} + \dots \\ \boldsymbol{I}_{T} &= \boldsymbol{I}_{1} = \boldsymbol{I}_{2} = \dots \end{split}$
Cells and batteries in parallel	$\begin{split} I_T &= I_1 + I_2 + \dots \\ V_T &= V_1 = V_2 = \dots \end{split}$
Voltage dividers	$V_{CC} = V_1 + V_2$ $V_1 = V_{CC} \times \frac{R_1}{R_1 + R_2}$ $V_2 = V_O = V_{CC} \times \frac{R_2}{R_1 + R_2}$
Resistor (R) in series with an LED	$R = \frac{V_{cc} - V_{LED}}{I_{LED}}$
Frequency (f)	$f = \frac{1}{t}$

Diode and transistor models

Diode model	Formulae	Diagram		
On	$V_{_D}$ = $V_{_{D,ON}}$ (or $V_{_F}$) Check: $I_{_D}$ > 0 A	anode (a) \bullet cathode (k) \bullet \bullet cathode \bullet		
Off	$I_{\scriptscriptstyle D} = 0 \; A$ $\mathbf{Check:}$ $V_{\scriptscriptstyle D} < V_{\scriptscriptstyle D,ON} \; (or \; V_{\scriptscriptstyle F})$			
Transistor model (NPN)	Formulae	Diagram		
Cut-off	$I_{\scriptscriptstyle B}$ = $I_{\scriptscriptstyle C}$ = 0 A Check: $V_{\scriptscriptstyle BE}$ < 0.7 V	Collector $I_{\scriptscriptstyle C}$		
Saturation	V_{BE} = 0.7 V V_{CE} = 0 V Check: I_{B} > 0 A $\frac{I_{C}}{I_{B}}$ < β (or h_{FE})	Base V_{CE} V_{CE} V_{BE} V_{E} V_{CE}		
Forward-active	V_{BE} = 0.7 V $\beta = \frac{I_C}{I_B}$ Check: $I_B > 0$ A $V_{CE} > 0$ V			
Darlington pair	Formulae	Diagram		
Gain (eta or $h_{\it FE}$) Base-emitter voltage	$\beta_{total} = \beta_{l} \times \beta_{2}$ $V_{BE, total} = V_{BEI} + V_{BE2}$ $= 0.7 + 0.7$ $= 1.4 \text{ V}$	Collector		

Resistor colour codes

Example: 4-band E12 resistor colour code

Band colours	Band 1	Band 2	Band 3 (multiplier)	Band 4 (tolerance)
Black	0	0	1	
Brown	1	1	10	± 1%
Red	2	2	100	± 2%
Orange	3	3	1000	
Yellow	4	4	10 000	
Green	5	5	100 000	
Blue	6	6	1 000 000	
Violet	7	7		
Grey	8	8		
White	9	9		
Gold			0.1	± 5%

E12 Preferred values: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82

Sample microcontroller

Standard circuit symbols

Magnetic reed switch

Standard circuit symbols (continued)

Voltmeter

Ammeter

Ohmmeter

NPN transistor

Diode

Motor

Bipolar stepper motor

Piezo sounder

Electromagnet (solenoid)

Darlington pair

Light dependent resistor

Light emitting diode

Servo

Flow chart symbols

This page has been left blank intentionally

Copyright
© School Curriculum and Standards Authority, 2025 This document – apart from any third-party copyright material contained in it – may be freely copied, or communicated on an
ntranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority (the Authority) is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.
Copying or communication for any other purpose can be done only within the terms of the <i>Copyright Act 1968</i> or with prior written permission of the Authority. Copying or communication of any third-party copyright material can be done only within the terms of the <i>Copyright Act 1968</i> or with permission of the copyright owners.

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons <u>Attribution 4.0 International (CC BY)</u> licence.

This document is valid for teaching and examining until 31 December 2025.