Government of Western Australia
School Curriculum and Standards Authority

## PHYSICS

## ATAR course examination 2018

## Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

## Question 1

(a) Determine the primary to secondary turns ratio of the step-up transformer used at the power station.

| Description | Marks |  |
| :--- | :---: | :---: |
| $\frac{V_{p}}{V_{s}}=\frac{N_{p}}{N_{s}}$ |  |  |
| $\frac{415}{11000}=\frac{N_{p}}{N_{s}}$ | 1 |  |
| $\frac{N_{p}}{N_{s}}=3.77 \times 10^{-2}$ |  | 1 |
| Ratio $=1: 26.5$ | Total | $\mathbf{2}$ |

(b) Determine the current available at the output of the step-up transformer.
(2 marks)

| Description | Marks |  |
| :--- | :---: | :---: |
| $P_{p}=P_{s}=V_{s} I_{s}$ <br> $300 \times 10^{3}=11000 \times I_{s}$ | 1 |  |
| $I_{s}=\frac{300 \times 10^{3}}{11 \times 10^{3}}=27.3 \mathrm{~A}$ |  | 1 |
|  | Total | $\mathbf{2}$ |

## Question 2

(a) Calculate the current drawn by each motor when operating at maximum power output. (4 marks)

| Description | Marks |
| :--- | :---: |
| $P_{\text {OUT }}=V_{B A C K} \times I$ | $1-2$ |
| $I=\frac{P_{\text {OUT }}}{V_{B A C K}}=57.7 \mathrm{~A}$ | $1-2$ |
| or | $1-2$ |
| $V_{E F F}=V_{S}-V_{B A C K}=600-520=80 \mathrm{~V}$ | $1-2$ |
| $I=\frac{V}{R}=\frac{80}{1.39}=57.6 \mathrm{~A}$ | Total |
|  | $\mathbf{4}$ |

(b) After operating for a while one of the motors becomes jammed. Describe, with a reason, what happens to the current in that motor when it becomes jammed.
(2 marks)

| Description | Marks |
| :--- | :---: |
| the current will increase significantly | 1 |
| as now there is no back emf to oppose the applied voltage | 1 |
|  | $\mathbf{2}$ |

## Question 3

(a) State why all photoelectrons emitted from the silicon do not have the same kinetic energy for a given incident wavelength.

| Description | Marks |  |  |
| :--- | :---: | :---: | :---: |
| electrons not on the surface will require more energy to escape the crystal <br> lattice structure <br> or <br> work function is the minimum energy required | 1 |  |  |
| Accept other relevant answers | $\mathbf{1}$ |  |  |
| Total |  |  | $\mathbf{1}$ |

(b) Determine the maximum energy in joules of the highest energy incident photons.
(2 marks)

| Description | Marks |
| :--- | :---: |
| $E=h f=\frac{h c}{\lambda}$ | 1 |
| $=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{510.6 \times 10^{-9}}=3.90 \times 10^{-19} \mathrm{~J}$ | 1 |
|  | Total |

(c) Calculate the work function of the silicon in joules.

| Description | Marks |
| :--- | :---: |
| $E_{k}$ $=h f-W$ <br> $W$ $=h f-E_{k}$ | 1 |
|  | $=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{510.6 \times 10^{-9}}-5.36 \times 10^{-20}$ |
|  | $=3.90 \times 10^{-19}-5.36 \times 10^{-20}$ |
|  | $=3.36 \times 10^{-19} \mathrm{~J}$ |
|  | 1 |

(a) Calculate the tension in each of the light steel cables supporting the sign.

(b) Calculate the compression force in the steel bracket BC , if the force only acts along $B C$.

| Description | Marks |
| :---: | :---: |
| Take moments about D $\sum T_{\mathrm{cw}}=\sum T_{\mathrm{acw}}$ | 1 |
| $W_{s} \times 1.90+W_{B} \times 1.25=F_{B r} \times 1.00 \times \sin 45^{\circ}$ | 1-2 |
| therefore $\begin{aligned} & F_{B r}=\frac{4 \times 9.8 \times 1.9+15 \times 9.8 \times 1.25}{1.00 \times \sin 45^{\circ}} \\ & 365 \mathrm{~N} \end{aligned}$ | 1 |
| Total | 4 |
|  |  |

## Question 5

Calculate the force exerted on one of these dust particles by the field when it is between the parallel vertical metal plates. The horizontal distance between the plates is 47.5 cm .

| Description | Marks |
| :---: | :---: |
| $F / q=V / d$ | 1 |
| $F=V q / d=\left(50 \times 10^{3} \times 1.00 \times 10^{-8}\right) / 0.475$ | 1 |
| $=1.05 \times 10^{-3} \mathrm{~N}$ | 1 |
|  | Total |

## Question 6

(a) Discuss how the pattern in Diagram 2 was produced.

| as the light 'wave' passes by the edges of the (spherical) object diffraction <br> occurs | 1 |  |  |
| :--- | :--- | :---: | :---: |
| waves interfere on screen | 1 |  |  |
| constructive interference occurs and gives rise to the light areas (circles) | 1 |  |  |
| destructive interference occurs and gives rise to the dark areas (circles) | 1 |  |  |
| the bright dot (in the middle) all waves are in phase (path difference is <br> zero) | 1 |  |  |
| Total |  |  | $\mathbf{5}$ |

(b) From this experiment, what conclusion can be made regarding the nature of light?
(1 mark)

| Description | Marks |
| :--- | :---: |
| that light has wave properties and behaves as a wave | 1 |
|  | Total |

## Question 7

(a) Determine the peak voltage output of this alternator.

| Description | Marks |
| :--- | :---: |
| $V_{\text {RMS }}=\frac{V_{\text {PEAK }}}{\sqrt{2}} \quad V_{\text {PEAK }}=\sqrt{2} \times V_{\text {RMS }}$ | 1 |
| $=\sqrt{2} \times 14.5 \mathrm{~V}=20.5 \mathrm{~V}$ |  |
|  | Total |

(b) Calculate the magnetic field strength needed to produce this peak output voltage. If you were unable to obtain an answer for part (a), use 25.0 V.

| Description | Marks |
| :--- | :---: |
| $f=\frac{600}{60} \mathrm{cps}=10 \mathrm{~Hz}($ period $=0.1 \mathrm{~s})$ | 1 |
| $A$ $=2 \times 7 \times 10^{-2} \times 6 \times 10^{-2}$ <br>  $=8.4 \times 10^{-3} \mathrm{~m}^{2}$ | 1 |
| MAX$=2 \pi N B A_{\perp} f$ |  |
| $20.5=2 \pi \times 320 \times\left(7 \times 10^{-2} \times 2 \times 6 \times 10^{-2}\right) \times \frac{600}{60} \times B$ | 1 |
| $B=\frac{20.5}{2 \pi \times 320 \times 8.4 \times 10^{-3} \times 10}=0.121 \mathrm{~T}(0.148 \mathrm{~T})$ | 1 |

## Question 8

(a) Describe why the colour and intensity of the tungsten changes as it is heated. (2 marks)

| Description | Marks |
| :--- | :---: |
| as the molecules are heated they vibrate faster and thus produce a higher <br> frequency <br> (accelerate and decelerate more rapidly the greater the deceleration the <br> greater the frequency of light produced) | 1 |
| as the temperature increases there are more molecules vibrating at faster <br> speeds and so the intensity of the higher frequencies increases | 1 |
| or | 1 |
| black body radiation where the dominant wavelength decreases as the <br> temperature increases hence the colour changes | 1 |
| as the temperature increases the power increases and hence an increase in <br> intensity | 1 |
|  | $\mathbf{2}$ |

(b) Use the axes below to sketch labelled graphs of intensity against wavelength for the two observed spectra at $2700^{\circ} \mathrm{C}$ and $3400^{\circ} \mathrm{C}$.
(3 marks)

| Description | Marks |
| :--- | :---: | :---: |
| shows higher temperature curve has a higher peak intensity at shorter <br> wavelength |  |
| shows lower temperature curve has a lower peak intensity at longer <br> wavelength |  |
| appropriate shape of curves | 1 |

## Question 9

(a) Compare the acceleration of cars A and B. Include an equation in your answer.
(3 marks)

| Description | Marks |
| :--- | :---: |
| $a_{c}=\frac{v^{2}}{r}$ | 1 |
| as $r_{\mathrm{A}}<r_{\mathrm{B}}$ and v is constant for both vehicles and the same <br> speed then $a_{\mathrm{c}} \propto \frac{1}{r}$ | 1 |
| therefore $a_{\mathrm{c}} \mathrm{A}>a_{\mathrm{c}} \mathrm{B}$ since $r_{\mathrm{A}}<r_{\mathrm{B}}$ | 1 |
|  | Total |

(b) How can the roundabout be redesigned to enable cars to travel safely at a higher speed? Explain your answer. Calculations are not required.

| Description | Marks |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| the roundabout will need to be banked/inclined plane | 1 |  |  |  |
| this means that the normal force can provide a horizontal component <br> inwards which contributes to the centripetal force required | 1 |  |  |  |
| thus the friction force needed can stay within safe limits. (On a horizontal <br> track, friction is the only force providing centripetal force.) | 1 |  |  |  |
| or | 1 |  |  |  |
| make the surface rougher | 1 |  |  |  |
| this will increase friction | 1 |  |  |  |
| thus the friction force is larger and can stay within safe limits. (On a <br> horizontal track, friction is the only force providing centripetal force.) | $\mathbf{1}$ |  |  |  |
| Total |  |  |  | $\mathbf{3}$ |

(a) Use the information above to calculate
(i) the magnitude of the magnetic field at point A due to the current in the conductor.
(2 marks)

| Description | Marks |
| :--- | :---: |
| $B$ | $=\frac{\mu_{o}}{2 \pi} \frac{I}{r}$ |
|  | $=\frac{4 \pi \times 10^{-7}}{2 \pi} \times \frac{285 \times 10^{-3}}{8 \times 10^{-3}}=71.2 \times 10^{-7}$ |
|  | $=7.12 \times 10^{-6} \mathrm{~T}$ |

(ii) the magnitude and direction of the resultant magnetic field at point A . If you were unable to obtain an answer to part (a)(i), use $6.00 \times 10^{-6} \mathrm{~T}$. Include a diagram in your answer.

| Description |  | Marks |
| :---: | :---: | :---: |
| vector diagram as below |  | 1 |
| $\begin{aligned} B_{R} & =\sqrt{\left(32 \times 10^{-6}\right)^{2}+\left(7.12 \times 10^{-6}\right)^{2}} \\ & =32.8 \times 10^{-6} \mathrm{~T}=3.28 \times 10^{-5} \mathrm{~T} \end{aligned}$ |  | 1 |
| $\begin{aligned} \tan \theta & =\frac{7.12}{32}=0.223 \\ \theta & =12.5^{\circ} \text { (below horizontal towards the right) } \end{aligned}$ |  | 1 |
|  | Total | 3 |
|  |  |  |

(b) Sketch the resultant magnetic field around the conductor.


Section Two: Problem-solving
50\% (89 Marks)

## Question 11

(a) Determine the initial vertical velocity of the firework rocket.

| Description | Marks |
| :--- | :---: |
| $30.0 \times \sin 70^{\circ}$ | 1 |
| $28.2 \mathrm{~m} \mathrm{~s}^{-1}$ | 1 |
|  | Total |

(b) Calculate the height of point $B$.

| Description | Marks |
| :--- | :---: |
| $v^{2}=u^{2}+2$ as |  |
| $0^{2}=28.19^{2}+2 \times(-9.80) \times s$ |  |
| $794.7=19.62 s$ |  |
| $s=40.5 \mathrm{~m}$ | $1-2$ |
|  | Total |

(c) Calculate the total time it takes for the firework rocket to reach point C where it explodes.

| Description |  | Marks |
| :---: | :---: | :---: |
| Time taken to reach point B $\begin{aligned} v & =u+a t \\ 0 & =28.19-9.80 t \\ t & =\frac{28.2}{9.8} \end{aligned}$ |  | 1 |
| $t=2.88 \mathrm{~s}$ |  | 1 |
| Time taken to reach point C $20 \sin 45^{\circ}=14.14$ $\begin{aligned} v & =u+a t \\ 0 & =14.1-9.80 t \\ t & =\frac{14.1}{9.8} \end{aligned}$ |  | 1 |
| $t=1.44$ |  | 1 |
| $\begin{aligned} & \text { Total time } \\ & 2.88+1.44=4.32 \mathrm{~s} \end{aligned}$ |  | 1 |
|  | Total | 5 |

(d) Use the axes below to sketch a graph of vertical velocity against time of the firework from immediately after it is launched at point $A$ until it reaches point $C$. Use appropriate values and ignore all effects due to air resistance


## Question 12

(a) Calculate the magnitude of the momentum of each photon.
(2 marks)

| Description | Marks |  |
| :--- | :---: | :---: |
| $\lambda=\frac{h}{p} \quad p=\frac{h}{\lambda}$ | 1 |  |
| $=\frac{6.63 \times 10^{-34}}{4.87 \times 10^{-9}}=1.36 \times 10^{-27} \mathrm{~N} \mathrm{~s}$ | 1 |  |
|  | Total | $\mathbf{2}$ |

(b) Calculate the recoil velocity of the mirror when the beam of light reflects from it.
(4 marks)

| Description | Marks |
| :---: | :---: |
| $\Delta p_{\text {PHoтол }}=\frac{2 h}{\lambda}$ | 1 |
| $\Delta p_{\text {TотАL }}=2 \times \frac{h}{\lambda} \times 2.5 \times 10^{18}=m \Delta v$ | 1 |
| $=2 \times \frac{6.67 \times 10^{-34}}{487 \times 10^{-9}} \times 2.5 \times 10^{18}=3 \times 10^{-9} \times \Delta v$ | 1 |
| $\Delta v=\frac{2 \times 1.36 \times 10^{-27} \times 2.5 \times 10^{18}}{3 \times 10^{-9}}=2.27 \mathrm{~m} \mathrm{~s}^{-1}$ | 1 |
|  | Total |

(c) Outline two possible limitations of using solar sail technology to propel a spacecraft.
(2 marks)

| Description | Marks |
| :--- | :---: |
| Any two of the following: |  |
| - photon density decreases rapidly with distance from the sun |  |
| - need a large sail to provide enough force to accelerate even a moderate |  |
| - mass |  |
| - force from the sail must be larger than the force of gravity from the sun | $1-2$ |
| - or other celestial bodies |  |
| - cant sail fragile sails affected by space debris |  |
| difficult to steer |  |
| Total |  |

## Question 13

(a) Calculate the orbital speed of the satellite.

| Description | Marks |
| :--- | :---: |
| $r=300 \times 10^{3}+r_{\text {Earth }}$ <br> $=300 \times 10^{3}+6.37 \times 10^{6}=6.67 \times 10^{6}$ | 1 |
| $\frac{m_{s} v^{2}}{r}=\frac{G M_{\text {Earth }} m_{\text {satellite }}}{r^{2}}$ |  |
| $v=\sqrt{\frac{G M_{\text {Earth }}}{r}}$ | 1 |
| $v=\sqrt{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{6.67 \times 10^{6}}}$ |  |
| $v=7.73 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$ | Total |
|  | 3 |

(b) Calculate the orbital period of the satellite.
(2 marks)

|  | Description |
| :--- | :---: |
| $T=\frac{2 \pi r}{v}=\frac{2 \pi \times 6.67 \times 10^{6}}{7.73 \times 10^{3}}$ | Marks |
| $=5421 \mathrm{~s}=5.42 \times 10^{3} \mathrm{~s}$ | 1 |
|  | Total |

(c) Calculate the gravitational acceleration experienced by the satellite in orbit. (2 marks)

| Description | Marks |
| :--- | :---: |
| $g=\frac{G M}{r^{2}}$ or $a=\frac{v^{2}}{r}$ | 1 |
| $g=\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{\left(6.67 \times 10^{6}\right)^{2}}$ or $\frac{\left(7.73 \times 10^{3}\right)^{2}}{6.67 \times 10^{6}}=8.95 \mathrm{~m} \mathrm{~s}^{-2}$ | 1 |
|  | Total |

(d) Calculate the altitude of the international space station based on an orbital period of 94.7 minutes.

| Description | Marks |
| :--- | :---: |
| $r_{s s}^{3}=\frac{T_{s s}^{2}}{T_{s}^{2}} \times r_{s}^{3}$ | 1 |
| $=\left(\frac{5682}{5421}\right)^{2} \times\left(6.67 \times 10^{6}\right)^{3}$ | 1 |
| $=6.88 \times 10^{6}-6.37 \times 10^{6}$ |  |
| $=510 \mathrm{~km}=5.10 \times 10^{5} \mathrm{~m}$ | 1 |
|  | Total |

## Question 14

(a) Calculate the velocity of any electron emitted from the ground state mercury atom.
(3 marks)

| Description | Marks |
| :--- | :---: |
| $E_{k}$ $=E_{e}-E_{\text {ionisation }}$ <br>  $=17.9 \times 10^{-19}-16.7 \times 10^{-19}$ <br>  $=1.2 \times 10^{-19}$ | 1 |
| $\frac{1}{2} m v^{2}=1.2 \times 10^{-19}$ | 1 |
| $\mathrm{v}=\sqrt{\frac{2 \times 1.2 \times 10^{-19}}{9.11 \times 10^{-31}}}$ |  |
| $=5.13 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$ | Total |
|  | $\mathbf{3}$ |

(b) Describe why some of the mercury atoms in the tube need to be ionised.

| Description | Marks |
| :--- | :---: |
| to create free electrons | 1 |
| to hit other mercury atoms to excite electrons and produce more photons <br> or <br> to create charges for pathway for electrical current <br> or <br> to produce high energy photons for fluorescence to occur | 1 |
|  | Total | $\mathbf{2}$.

(c) Calculate the possible energies the incident electron can have after this collision.
(3 marks)

| Description | Marks |
| :--- | :---: |
| $1 \rightarrow 2 \Delta \mathrm{E}=(16.7-9.25) \times 10^{-19} \mathrm{~J}=7.45 \times 10^{-19} \mathrm{~J}$ | 1 |
| $\Delta \mathrm{E}=(10.5-7.45) \times 10^{-19} \mathrm{~J}=3.05 \times 10^{-19} \mathrm{~J}$ (scattered electron) | 1 |
| 2 or $\mathrm{J}=10.5 \times 10^{-19} \mathrm{~J}$ (elastic collision) | 1 |
| Total | $\mathbf{3}$ |

(d) Determine the part of the spectrum to which the lowest energy emitted photons belong when subject to an incident electron with energy $10.5 \times 10^{-19} \mathrm{~J}$.

| Description | Marks |
| :--- | :---: |
| $f=E / h=7.45 \times 10^{-19} / 6.63 \times 10^{-34}=1.12 \times 10^{15} \mathrm{~Hz}$ or $\lambda=2.67 \times 10^{-7} \mathrm{~m}$ | 1 |
| This is UV therefore all transitions to the ground state must be UV. | 1 |
|  | $\mathbf{2}$ |

(e) Explain how the emitted photons produced by the mercury atoms produce visible light in the fluorescent material.

| Description | Marks |
| :--- | :---: |
| the high energy photons (UV) are absorbed causing the electrons of the <br> fluorescent material to jump to a higher state | 1 |
| these electrons then fall back to the ground state in a series of steps | 1 |
| emitting light some of which is in the visible spectrum | 1 |
|  | $\mathbf{3}$ |

## Question 15

(a) Complete the table above for values of $1 / \lambda$.
(2 marks)

| Description | Marks |
| :--- | :---: |
| $10^{6}$ | 1 |
| $2.22(2.2), 1.82(1.8), 1.75(1.8), 1.45(1.4), 1.12(1.1)$ | 1 |
|  | Total |

(b) Plot a graph of voltage against $1 / \lambda$, with voltage on the $y$-axis, and draw a line of best fit.

Error bars are not required.


Question 15 (continued)
(c) Use the graph to calculate the gradient of the line of best fit. Show construction lines.
(3 marks)

| Description | Marks |
| :--- | :---: |
| drawing construction lines | 1 |
| formulae and working |  |
| gradient $=3.4-0.0 / 2.78-0.50$ | 1 |
| $=1.49(1.5) \times 10^{-6} \mathrm{~V} \mathrm{~m}$ <br> $\left(\right.$ range $1.4 \times 10^{-6}$ to $\left.1.6 \times 10^{-6} \mathrm{~V} \mathrm{~m}\right)$ | 1 |
|  | $\mathbf{T o t a l}$ |

(d) Use the gradient from part (c) and the provided equation to calculate a value for

Planck's constant.
(3 marks)

| Description | Marks |
| :--- | :---: |
| $h=\frac{q_{e} V_{0} \lambda}{c}$ |  |
| $h=\frac{q_{e} \times \text { gradient }}{c}$ | 1 |
| $=\frac{1.6 \times 10^{-19} \times 1.49 \times 10^{-6}}{3 \times 10^{8}}$ | 1 |
| $=7.9 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ | Total |
|  | $\mathbf{3}$ |

(e) From your graph, determine the value for k in this experiment.

| Description | Marks |
| :--- | :---: |
| showing working on graph or calculation | 1 |
| a value of approximately $0.7 \pm 0.1(0.60 \rightarrow 0.95)$ | 1 |
|  | Total |

(f) Describe two possible sources of experimental error in the performance of this experiment and how they might be modified to produce a more accurate result.
(4 marks)

| Description | Marks |  |  |
| :--- | :---: | :---: | :---: |
| Source/s of error |  |  |  |
| Any two of the following: | $1-2$ |  |  |
| - accuracy of wavelength |  |  |  |
| - accuracy of voltage readings |  |  |  |
| - energy required to start LED lights (may not be same for each light) |  |  |  |
| Produce/s (a) more accurate result/s |  |  |  |
| Any two of the following:  <br> - repeat readings of voltage  <br> - repeat reading of wavelength  <br> - use more accurate voltage devices  <br> - repeat the experiment several times and average the results $1-2$ <br> use a wider/greater range of LED lights  |  |  |  |
| Total |  |  | $\mathbf{4}$ |

## Question 16

(a) Calculate the velocity of the other spacecraft relative to Earth.

| Description | Marks |
| :--- | :---: |
| $u=\frac{v+u^{\prime}}{1+\frac{v u^{\prime}}{c^{2}}}$ |  |
| $=\frac{0.72 c-0.695 c}{1+\frac{0.72 c \times(-0.695 c)}{c^{2}}}=\frac{0.025}{0.4996}$ | $1-2$ |
| $=0.050 c$ |  |
| Note: two marks if identifies $u^{\prime}$ and $v$ correctly |  |

(b) Calculate the number of years for your spacecraft to journey from Earth to Alpha

Centauri as measured by an observer on Earth.

| Description | Marks |
| :--- | :---: |
| $v=\frac{s}{t}$ |  |
| $t=\frac{s}{v}=\frac{4.13 \times 10^{16}}{0.72 \times 3 \times 10^{8}}=\frac{4.13 \times 10^{16}}{2.16 \times 10^{8}}$ | 1 |
| $=\frac{1.912 \times 10^{8} s}{1.912 \times 10^{8}}=6.06$ years | 1 |
| $=\frac{1}{365.25 \times 24 \times 60 \times 60}$ | 1 |

(c) Calculate the number of years the journey will take for those on the spacecraft travelling at $0.720 c$ relative to Earth.

| Description |  | Marks |
| :---: | :---: | :---: |
| $t=\frac{t_{o}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ |  | 1 |
| $\begin{aligned} & 6.06=\frac{t_{o}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\ & t_{o}=6.06 \sqrt{1-\frac{v^{2}}{c^{2}}} \\ &=6.06 \sqrt{1-0.72^{2}} \end{aligned}$ |  | 1 |
| $=4.20$ years only 4.20 years seem to have passed on the ship |  | 1 |
|  | Total | 3 |

## Question 16 (continued)

(d) For those on the spacecraft travelling to Alpha Centauri at 0.720 c relative to Earth, calculate the time they would have observed to have elapsed on Earth during the journey from Earth to Alpha Centauri.

| Description | Marks |
| :---: | :---: |
| $\left.t_{o}=t \times \sqrt{\left(1-\frac{0.72^{2}}{1}\right)}\right)$ | 1 |
| $=4.20 \times 0.694$ | 1 |
| $=2.91$ years | 1 |
| Note: if do not use $\mathrm{t}=4.20$ years then maximum of 1 mark | 3 |
|  |  |

## Question 17

(a) Use the equation above to describe how the nucleus of the fluorine-18 decays to produce oxygen-18. Name the other particles produced.

| Description | Marks |
| :--- | :---: |
| a proton turns into a neutron | 1 |
| emitting a positron | 1 |
| and an electron neutrino | 1 |
|  | Total |

(b) Name the force and force particle that mediate the interaction described in part (a).

| Description | Marks |
| :--- | :---: |
| Force: weak | 1 |
| Force particle: $\mathrm{W}^{+}$boson (accept W or Z boson) | 1 |
|  | Total |

(c) Use your knowledge of the Standard Model to prove that this emission obeys the conservation of baryon number and charge. Assume all quarks have a baryon number equal to $1 / 3$.

| Description | Marks |
| :--- | :---: |
| baryon number on left hand side $=+1$ (proton) or $+18(\mathrm{~F})$ | 1 |
| baryon number on right hand side $=+1$ (neutron) or $+18(\mathrm{O})$ | 1 |
| charge on left hand side $=+1$ on left hand side (proton) or $+9(\mathrm{~F})$ | 1 |
| charge on right hand side $=+1$ on right hand side (positron) or $+8(\mathrm{O})+1$ <br> (positron) | 1 |
| Total | $\mathbf{4}$ |

Note: if mix whole atom and single reaction in conservation rules then maximum of three marks
(d) Discuss the interactions that must occur to produce two gamma rays travelling in opposite directions to each other.

| Description | Marks |
| :--- | :---: |
| a positron and an electron must meet/interact due to electromagnetic <br> forces | 1 |
| as positron is electron anti-particle | 1 |
| they will annihilate producing energy in the form of photons | 1 |
| to conserve energy two high energy photons must be produced | 1 |
| two photons travel in opposite directions to conserve momentum $\quad$ Total | $\mathbf{5}$ |
|  | $\mathbf{5}$ |

## Section Three: Comprehension

## Question 18

(a) Use mathematical reasoning to explain why scientists might have believed that the stars at the outer edges would leave the rotating galaxy.
(5 marks)

| Description | Marks |
| :--- | :---: |
| For the stars to rotate then | 1 |
| $F_{c}=F_{g}$ | 1 |
| therefore |  |
| $\frac{M_{\text {star }} v^{2}}{r_{\text {star }}}=\frac{G M_{\text {galaxy }} M_{\text {star }}}{r_{\text {star }}}$ | 1 |
| $v=\sqrt{\frac{G M_{\text {galaxy }}}{r_{\text {star }}}}$ | 1 |
| using the mass of the galaxy and radius of the outer stars they found that <br> $v$ measured by the Doppler shift was greater <br> than $\sqrt{\frac{G M_{\text {galaxy }}}{r_{\text {star }}}}$ for the measured mass and radius | $1-2$ |
|  | Total |

(b) What hypothesis was made to account for the observation that stars on the outer edge did not leave the rotating galaxy?

| Description | Marks |
| :--- | :---: |
| there must be other matter with mass (other than can be seen) | 1 |
| dark matter (that cannot be seen) | 1 |
|  | $\mathbf{2}$ |

(c) Describe how red shift and blue shift are produced and how this informs astronomers on Earth that galaxies are rotating.

| Description | Marks |
| :--- | :---: |
| Red shift | 1 |
| red shift is produced when an object emitting light is moving away from the <br> observer | 1 |
| and the wavelength of emitted light increases | 1 |
| Blue shift | 1 |
| blue shift is produced when an object emitting light is moving toward the <br> observer | 1 |
| and the wavelength of the emitted light is decreased | 1 |
| Galaxy rotation <br> as one side of a galaxy is red shifted and the other is blue shifted it indicates <br> circular motion | $\mathbf{1}$ |
| Total |  |

(d) Discuss how Hubble's Law supports the Big Bang theory.

| Description | Marks |
| :--- | :---: |
| Hubble's law suggests cosmological red shift is caused by the <br> stretching/expansion of photons of light from galaxies as space/time itself <br> expands <br> or |  |
| Hubble's law also explains that galaxies further away are travelling faster <br> than those nearby <br> this causes the photons wavelength to increase/red shift | $1-2$ |
| this provides evidence that galaxies are moving further apart and therefore <br> the universe is expanding in all directions | 1 |
| this supports the Big Bang theory hypothesis that all galaxies must have <br> originated from a singularity if galaxies trajectories are traced back to their <br> origin | 1 |

(a) Determine the kinetic energy, in joules, that each proton has on leaving the electric field prior to entering the four accelerating radio frequency chambers of the LHC.

| Description | Marks |
| :--- | :---: |
| $E=90.0 \mathrm{keV}$ |  |
| $E=90 \times 10^{3} \times 1.6 \times 10^{-19} \mathrm{~J}$ |  |
| or |  |
| $W=V q$ |  |
| $W=90 \times 10^{3} \times 1.6 \times 10^{-19} \mathrm{~J}$ |  |
| or |  |
| $E_{k}=\frac{1}{2} m v^{2}$ | 1 |
|  | $=\frac{1}{2} \times 1.67 \times 10^{-27} \times\left(0.014 \times 3 \times 10^{8}\right)^{2}$ |
|  | $1.44 \times 10^{-14} \mathrm{~J}$ |

(b) Calculate the energy per second in watts consumed per proton to increase its kinetic energy from 450 GeV to 6.50 TeV in the LHC.

| Description | Marks |  |
| :--- | :---: | :---: |
| $\Delta E_{k} \quad$$=$ Energy gained per proton <br> $=\left(6.50 \times 10^{12}-450 \times 10^{9}\right)$ <br> $=6.05 \times 10^{12} \mathrm{eV}$ | 1 |  |
|  $=6.05 \times 10^{12} \times 1.60 \times 10^{-19} \mathrm{~J}$ <br>  $9.68 \times 10^{-7} \mathrm{~J}$ | 1 |  |
| $=\frac{\Delta E}{t}$ |  | 1 |
| $=\frac{9.68 \times 10^{-7}}{20 \times 60}$ |  | 1 |
| $=8.07 \times 10^{-10} \mathrm{~W}$ | Total | $\mathbf{4}$ |

(c) Determine the relativistic momentum of a proton in the LHC with a velocity of $0.99999998 c$.

| Description | Marks |
| :--- | :---: |
| $p=\frac{1.67 \times 10^{-27} \times 0.99999998 c}{\sqrt{1-0.99999998^{2}}}$ | 1 |
| $=2.50 \times 10^{-15} \mathrm{~N} \mathrm{~s}$ | Total |
|  | $\mathbf{2}$ |

(d) Calculate the magnetic field strength required to maintain the protons on the required path in the LHC. If you were unable to obtain an answer for part (c), use $3.50 \times 10^{-15} \mathrm{~N} \mathrm{~s}$.

(e) The diagram below represents a magnetic field directed vertically out of the page. A proton in the LHC enters this magnetic field at an angle of $90^{\circ}$ to the direction of the field. On the diagram below, continue the path of this proton when in the magnetic field.

(f) Describe with clear reasoning, what happens to the centripetal force on a proton in the LHC as the kinetic energy of the proton increases from 450 GeV to 4.50 TeV .

| Description | Marks |
| :--- | :---: |
| as the kinetic energy increases the relativistic momentum increases <br> or <br> as the kinetic energy increases the velocity increases and (relativistic) mass <br> increases | $1-2$ |
| therefore $F_{c}=\frac{m v^{2}}{r}$ then $F_{c}$ must increase | 1 |
| Total | $\mathbf{3}$ |

## Question 19 (continued)

(g) Describe why the mass of the products after a successful collision of the two protons is greater than the rest mass of the two protons before the collision.

| Description | Marks |
| :--- | :---: |
| some of the kinetic energy of the colliding protons becomes the mass after <br> the collision. | $\mathbf{2}$ |
| reference to mass-energy equivalence $E=m c^{2}$ | 1 |
| Note: 1 mark if only references mass-energy equivalence | $\mathbf{2}$ |

(h) If the rest mass energy of a proton is 938 MeV , calculate the velocity the proton reaches when accelerated to a kinetic energy of 1.4 GeV .

| Description | Marks |
| :--- | :---: |
| $.938+1.4=2.338 \mathrm{GeV}\left(=3.7408 \times 10^{-10} \mathrm{~J}\right)$ | 1 |
| $\frac{E}{m c_{2}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ |  |
| $\frac{3.7408 \times 10^{-10}}{1.67 \times 10^{-27} \times 9 \times 10^{-16}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ |  |
| $2.489=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ | $1-2$ |
| $0.4018=1-\left(\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}$ |  |
| $1-\frac{v^{2}}{c^{2}}=0.1614$ |  |
| $\frac{v^{2}}{c^{2}}=0.8386$ |  |
| $v=0.916 c$ | 1 |
|  | Total |

Note: If simply substitutes the value for kinetic energy into the total energy formula then a maximum of two marks awarded.

## ACKNOWLEDGEMENTS

Question 8(b) Graph adapted from: Kule, D. (2010). File: Black body.svg [Graph]. In Wikimedia. Retrieved October, 2018, from<br>https://commons.wikimedia.org/wiki/File:Black_body.svg Used under Creative Commons Attribution-ShareAlike 3.0 Unported licence<br>Question 17(a) Text under 'Description’ adapted from: Beta decay. (2012). In Wikiversity. Retrieved October, 2018, from https://en.wikiversity.org/wiki/Beta_decay Used under Creative Commons Attribution-ShareAlike 3.0 Unported licence

[^0]
[^0]:    This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

    Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

    Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

