MATHEMATICS APPLICATIONS ATAR COURSE

FORMULA SHEET

2021

Copyright

© School Curriculum and Standards Authority, 2016
This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

Statistics

Bivariate data	observed value - predicted value $=y-\hat{y}$
Residual value	$\hat{y}=a+b x$ where y is the response variable and x is the explanatory variable Least-squares line
Periodic time series	
$\hat{y}=a+b t$ where y is the response variable and t is time (the explanatory variable)	

Growth and decay in sequences

| Arithmetic sequence | $T_{1}=a, \quad T_{n}=a+(n-1) d$ | $d=T_{n+1}-T_{n}$ |
| :--- | :--- | :--- | :--- |
| Geometric sequence | $T_{1}=a, \quad T_{n}=a r^{(n-1)}$ | $r=\frac{T_{n+1}}{T_{n}}$ |
| First-order linear recurrence relation | $T_{1}=a, \quad T_{n+1}=b T_{n}+c \quad$ for $\quad n \geq 1$ | |

Graphs, networks and decision mathematics

Euler's formula	$v+f-e=2$

Loans, investments and annuities

Simple interest	$I=P r t$
Compound interest	$A=P(1+r)^{t} \quad$compounded annually Cffective annual rate of interest
	$i_{\text {effective }}=\left(1+\frac{r}{n}\right)^{n t} \quad$ compounded n times a year

Note: Any additional formulas identified by the examination panel as necessary will be included in the body of the particular question.

