MATHEMATICS METHODS

Calculator-free

ATAR course examination 2019

Marking key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section One: Calculator-free

Question 1

Consider the derivative function $f^{\prime}(x)=x e^{x^{2}}$.
(a) Determine $f^{\prime \prime}(1)$.

$f^{\prime \prime}(x)=x\left(2 x e^{x^{2}}\right)+e^{x^{2}}$
$f^{\prime \prime}(1)=3 e$
Solution
\checkmark uses the chain rule to correctly differentiate $f^{\prime}(x)$
\checkmark evaluates at $x=1$

(b) Explain the meaning of your answer to part (a).

$f^{\prime \prime}(1)$ is the rate of change of the derivative function when $x=1$
\quad Specific behaviours
\checkmark states it is the rate of change of the derivative AND includes when $x=1$

(c) Determine the expression for $y=f(x)$, given that it intersects the y-axis at the point $(0,2)$.

$\int x e^{x^{2}} d x$
$=\frac{e^{x^{2}}}{2}+C$
2
$=\frac{e^{0}}{2}+C$
C
$=\frac{3}{2}$
$\therefore f(x)=\frac{e^{x^{2}}}{2}+\frac{3}{2}$
\checkmark correctly integrates $f^{\prime}(x) \quad$ Specific behaviours
\checkmark substitutes $(0,2)$ into an expression involving C
\checkmark determines C and states the final expression for $y=f(x)$

Question 2

The values of the functions $g(x)$ and $h(x)$, and their derivatives $g^{\prime}(x)$ and $h^{\prime}(x)$ are provided in the table below for $x=1, x=2$ and $x=3$.

	$x=1$	$x=2$	$x=3$
$g(x)$	3	5	-3
$h(x)$	2	-2	6
$g^{\prime}(x)$	-4	1	4
$h^{\prime}(x)$	0	-6	-5

(a) Evaluate the derivative of $\frac{g(x)}{h(x)}$ at $x=3$.
(2 marks)

$\left(\frac{g}{h}\right)^{\prime}(3)$ Solution $=\frac{g^{\prime}(3) h(3)-g(3) h^{\prime}(3)}{h(3)^{2}}$ $=\frac{4(6)-(-3)(-5)}{6^{2}}$ $=\frac{1}{4}$ Specific behaviours \checkmark expresses the derivative using the quotient rule \checkmark evaluates the derivative

(b) Evaluate the derivative of $h(g(x))$ at $x=1$.
\(\left.\begin{array}{|l|}\hline Solution

\hline h(g(1))^{\prime}

=h^{\prime}(g(1)) g^{\prime}(1)

=h^{\prime}(3)(-4)

=(-5)(-4)

=20\end{array}\right]\)	

(c) If $h^{\prime \prime}(1)=-1$, describe with justification, what the graph of $h(x)$ looks like at this point.
(2 marks)

Solution
Since $h^{\prime}(1)=0$ there is a stationary point at $x=1$ Since $2^{\text {nd }}$ derivative is negative the point is a maximum
Specific behaviours
\checkmark justifies stationary point
\checkmark determines point is a maximum

Question 3

Waiting times for patients at a hospital emergency department can be up to four hours. The associated probability density function is shown below.

(a) What is the probability a patient will wait less than one hour?

Solution
For: $0 \leq t \leq 1.5$ $\begin{aligned} f(t) & =\frac{0.5}{1.5} t \\ & =\frac{t}{3} \end{aligned}$ $\begin{aligned} P(T & \leq 1)=\int_{0}^{1} \frac{t}{3} d t \\ & =\left[\frac{t^{2}}{6}\right]_{0}^{1} \\ & =\frac{1}{6} \end{aligned}$
Specific behaviours
\checkmark determines equation for $f(t)$ \checkmark writes a correct statement for probability involving calculus \checkmark evaluates integral to determine probability

OR

Alternate Solution

Required probability is the area of the triangle that has base 1 unit
The height of the triangle is $\frac{2}{3} \times \frac{1}{2}=\frac{1}{3}$
$P(T \leq 1)=\frac{1}{2} \times 1 \times \frac{1}{3}=\frac{1}{6}$
Specific behaviours
\checkmark recognises that the probability is the area of triangle with base length 1 unit
\checkmark determines the height of the triangle
\checkmark correctly calculates the area
(b) What is the probability a patient will wait between one hour and three hours? (4 marks)

Solution

$$
\begin{aligned}
& P(1 \leq T \leq 3)=1-P(0 \leq T \leq 1)-P(3 \leq T \leq 4) \\
& P(0 \leq T \leq 1)=\frac{1}{6}
\end{aligned}
$$

For: $1.5 \leq t \leq 4$
$f(t)=-\frac{0.5}{2.5} t+c=-\frac{t}{5}+c$
$f(4)=0$
$0=-\frac{4}{5}+c \Rightarrow \frac{4}{5}$
$f(t)=-\frac{t}{5}+\frac{4}{5}$
$P(3 \leq T \leq 4)=\frac{1}{5} \int_{3}^{4}(-t+4) d t=\frac{1}{5}\left[-\frac{t^{2}}{2}+4 t\right]_{3}^{4}$
$=\frac{1}{5}\left[-8+16+\frac{9}{2}-12\right]$
$=\frac{1}{10}$
$P(1 \leq T \leq 3)=1-\frac{1}{10}-\frac{1}{6}=\frac{22}{30}=\frac{11}{15}$
Specific behaviours
\checkmark determines the equation for $f(t)$ when $1.5 \leq t \leq 4$
\checkmark writes a correct statement for probability
\checkmark calculates $P(3 \leq T \leq 4)$ correctly
\checkmark calculates $P(1 \leq T \leq 3)$ correctly

Question 4

Consider the graph of $y=\ln (x)$ shown below.

(a) Use the graph to estimate the value of p in each of the following.
(i) $1.4=\ln (p)$

Solution
$p=4 \quad$ Specific behaviours
\checkmark states the correct value of p

(ii)

$$
e^{p+1}-3=0
$$

$e^{p+1}=3$
$p+1=\ln (3)$
$p+1=1.1$
$\quad \therefore p=0.1$
Solution
rearranges to form a logarithmif equation \checkmark states the correct value of p

(b) On the axes below, sketch the graph of $y=\ln (x-2)+1$.

Solution
\checkmark draws asymptote at $x=2$
\checkmark the sketch passes through the point (3,1)
\checkmark the sketch has the correct shape and has a y-coordinate between 2.5 and 3 when
$x=7$

Question 5

(a) Determine the area bound by the graph of $f(x)=e^{x}$ and the x-axis between $x=0$ and $x=\ln 2$.
(3 marks)

Solution

First we obtain the area under the graph of $f(x)$ between $x=0$ and $x=\ln 2$. This is given by

$$
A=\int_{0}^{\ln 2} e^{x} d x=\left.e^{x}\right|_{0} ^{\ln 2}=2-1=1 .
$$

Specific behaviours
\checkmark writes down the correct integral
\checkmark integrates correctly
\checkmark simplifies to obtain final answer
(b) Hence, determine the area bound by the graph of $f(x)=e^{x}$, the line $y=2$ and the y-axis.

| This is given by the area shown below. Solution |
| :--- | :--- |
| That is, |
| \checkmark correctly defines the area |
| \checkmark calculates the area correctly |

(c) Determine the area bounded by the graph of $f(x)=e^{x}$, the line $y=a$ and the y-axis, where a is a positive constant.
(3 marks)

Solution
$\begin{gathered} \int_{0}^{\ln a} e^{x} d x=\left.e^{x}\right\|_{0} ^{\ln a}=a- \\ A=\ln (a) \times a-(a-1) \\ =a \ln (a)-a+1 \end{gathered}$
Specific behaviours
\checkmark writes down the correct integral \checkmark integrates correctly and simplifies to obtain $a-1$ \checkmark determines the correct expression for area

Question 6

The error X in digitising a communication signal has a uniform distribution with probability density function given by

$$
f(x)= \begin{cases}1, & -0.5<x<0.5 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Sketch the graph of $f(x)$.

(b) What is the probability that the error is at least 0.35 ?

Solution
$P(X>0.35)=$ Area $=0.15$
\checkmark Specific behaviours
\checkmark computes the correct probability

(c) If the error is negative, what is the probability that it is less than -0.35 ?

Solution
$P(X<-0.35 \mid X<0)=\frac{P(X<-0.35 \cap X<0)}{P(X<0)}=\frac{P(X<-0.35)}{P(X<0)}=\frac{0.15}{0.5}=0.3$
\quad Specific behaviours
\checkmark writes the correct conditional probability statement
\checkmark computes the probability correctly

(d) An engineer is more interested in the square of the error. What is the probability that the square of the error is less than 0.09 ?
(2 marks)

Solution
$\quad P\left(X^{2}<0.09\right)=P(-0.3<X<0.3)=0.6$
\checkmark correctly expresses the required probability in terms of X
\checkmark computes the probability correctly

Question 6 (continued)
(e) Calculate the variance of the error.

Solution	
So $E(X)=\int_{-0.5}^{0.5} x d x=0$	
$\qquad \operatorname{Var}(X)=\int_{-0.5}^{0.5}(x-0)^{2}(1) d x=\left.\frac{x^{3}}{3}\right\|_{-0.5} ^{0.5}=\frac{0.125+0.125}{3}=\frac{1}{12}$	
	Specific behaviours
\checkmark computes mean correctly	
\checkmark states an integral for the variance	
\checkmark evaluates the integral to determine variance correctly	

Question 7

A company's profit, in millions of dollars, over a five-year period can be modelled by the function:

$$
P(t)=2 t \sin (3 t) \quad 0 \leq t \leq 5 \text { where } t \text { is measured in years. }
$$

The graph of $P(t)$ is shown below.

(a) Differentiate $P(t)$ to determine the marginal profit function, $P^{\prime}(t)$.

(b) Calculate the rate of change of the marginal profit function when $t=\frac{\pi}{18}$ years. (4 marks)

Question 7 (continued)
(c) Use the increments formula at $t=\frac{7 \pi}{6}$ to estimate the change in profit for a one month change in time.

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

