MATHEMATICS SPECIALIST ATAR COURSE

FORMULA SHEET

2021

IndexDifferentiation and integration3
Applications of calculus Functions Statistical inference 4MensurationVectors in 3D5
Complex numbers 6
Trigonometry 7

Differentiation and integration

$\frac{d}{d x} x^{n}=n x^{n-1}$		$\int x^{n} d x=\frac{x^{n+1}}{n+1}+c, \quad n \neq-1$
$\frac{d}{d x} e^{a x}=a e^{a x}$		$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x} \ln x=\frac{1}{x}$		$\int \frac{1}{x} d x=\ln \|x\|+c$
$\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)}$		$\int \frac{f^{\prime}(x)}{f(x)} d x=\ln \|f(x)\|+c$
$\frac{d}{d x} \sin f(x)=f^{\prime}(x) \cos f(x)$		$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x} \cos f(x)=-f^{\prime}(x) \sin f(x)$		$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x} \tan f(x)=f^{\prime}(x) \sec ^{2} f(x)=\frac{f^{\prime}(x)}{\cos ^{2} f(x)}$		$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
Product rule	If $y=u v$ then $\frac{d}{d x}(u v)=v \frac{d u}{d x}+u \frac{d v}{d x}$	$\text { If } y=f(x) g(x)$ or then $y^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
Quotient rule	If $y=\frac{u}{v}$ then $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$	$\text { If } y=\frac{f(x)}{g(x)}$ or then $y^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
Chain rule	If $y=f(u)$ and $u=g(x)$ then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$	$\text { If } y=f(g(x))$ or then $y^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$
Fundamental theorem	$\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)$	and $\quad \int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$

Applications of calculus

Growth and decay	
Exponential equation	$\frac{d P}{d t}=k P \Leftrightarrow P=P_{0} e^{k t}$
Logistic equation	$\frac{d P}{d t}=r P(k-P) \Leftrightarrow P=\frac{k P_{0}}{P_{0}+\left(k-P_{0}\right) e^{-r k t}}$
Volumes of solids of revolution	
About the x-axis	$V=\pi \int_{a}^{b}[f(x)]^{2} d x$
About the y-axis	$V=\pi \int_{c}^{d}[f(y)]^{2} d y$

Simple harmonic motion

$$
\text { If } \frac{d^{2} x}{d t^{2}}=-k^{2} x \quad \text { then } \quad x=A \sin (k t+\alpha) \quad \text { or } \quad x=A \cos (k t+\beta)
$$

where A is the amplitude, α and β are phase angles, v is the velocity and x is the displacement

$$
v^{2}=k^{2}\left(A^{2}-x^{2}\right) \quad \text { Period: } T=\frac{2 \pi}{k} \quad \text { Frequency: } f=\frac{1}{T}
$$

Increments formula	$\delta y \approx \frac{d y}{d x} \times \delta x$
Acceleration	$\frac{d v}{d t} \quad$ or $\quad v \frac{d v}{d x} \quad$ or $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$

Functions

Quadratic function	If $f(x)=a x^{2}+b x+c$ and $f(x)=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Absolute value function	$\|x\|=\left\{\begin{aligned} x, & \text { for } x \geq 0 \\ -x, & \text { for } x<0\end{aligned}\right.$

Statistical inference

Confidence interval for the mean of the population	$\bar{X}-z \frac{s}{\sqrt{n}} \leq \mu \leq \bar{X}+z \frac{s}{\sqrt{n}}$
Sample size	$n=\left(\frac{z \times s}{d}\right)^{2}$

Mensuration

Parallelogram	$A=b h$
Triangle	$A=\frac{1}{2} b h \quad$ or $\quad A=\frac{1}{2} a b \sin C$
Trapezium	$A=\frac{1}{2}(a+b) h$
Circle	$A=\pi r^{2} \quad$ and $\quad C=2 \pi r=\pi d$

Prism	$V=A h$, where A is the area of the cross section	
Pyramid	$V=\frac{1}{3} A h$, where A is the area of the base	
Cylinder	$V=\pi r^{2} h$	$T S A=2 \pi r h+2 \pi r^{2}$
Cone	$V=\frac{1}{3} \pi r^{2} h$	$T S A=\pi r s+\pi r^{2}$, where s is the slant height
Sphere	$V=\frac{4}{3} \pi r^{3}$	$T S A=4 \pi r^{2}$

Vectors in 3D

Magnitude	$\left(a_{1}, a_{2}, a_{3}\right) \mid=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}}$
Dot product	$\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
Cross product	$\mathbf{a} \times \mathbf{b}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)$
Equation of a line	One point and direction $\quad \mathbf{r}=\mathbf{a}+\lambda \mathbf{u}$
	Two points A and $\mathrm{B} \quad \mathbf{r}=\mathbf{a}+\lambda(\mathbf{b}-\mathbf{a})$
Equation of a plane	$\mathbf{r}=\mathbf{a}+\lambda \mathbf{u}_{1}+\mu \mathbf{u}_{2} \quad$ or $\quad \mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$
Equation of a sphere	$\|\mathbf{r}-\mathbf{d}\|=r$ or $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$
Cartesian equation of a line	$\frac{x-a_{1}}{u_{1}}=\frac{y-a_{2}}{u_{2}}=\frac{z-a_{3}}{u_{3}}$
Cartesian equation of a plane	$a x+b y+c z=d$
Parametric equation of a line	$\begin{align*} & x=a_{1}+\lambda u_{1} \ldots \ldots \text { (1) } \tag{1}\\ & y=a_{2}+\lambda u_{2} \ldots \ldots \text { (2) } \\ & z=a_{3}+\lambda u_{3} \ldots \ldots \text { (3) } \tag{3} \end{align*}$

Complex numbers

Cartesian form	
$z=a+b i$	$\bar{z}=a-b i$
$\operatorname{Mod}(z)=\|z\|=\sqrt{a^{2}+b^{2}}=r$	$\operatorname{Arg}(z)=\theta, \quad \tan \theta=\frac{b}{a}, \quad-\pi<\theta \leq \pi$
$\left\|z_{1} z_{2}\right\|=\left\|z_{1}\right\|\left\|z_{2}\right\|$	$\left\|\frac{z_{1}}{z_{2}}\right\|=\left\|\frac{z_{1}}{\mid z_{2}}\right\|$
$\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$	$\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
$z \bar{z}=\|z\|^{2}$	$z^{-1}=\frac{1}{z}=\frac{\bar{z}}{\|z\|^{2}}$
$\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$	$\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$
Polar form	
$z=a+b i=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$	$\bar{z}=r \operatorname{cis}(-\theta)$
$z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$	$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$
$\operatorname{cis}\left(\theta_{1}+\theta_{2}\right)=\operatorname{cis} \theta_{1} \operatorname{cis} \theta_{2}$	$\operatorname{cis}(-\theta)=\frac{1}{\operatorname{cis} \theta}$
De Moivre's theorem	
$z^{n}=\|z\|^{n}$ cis ($n \theta$)	$(\operatorname{cis} \theta)^{n}=\cos n \theta+i \sin n \theta$
$z^{\frac{1}{q}}=r^{\frac{1}{q}}\left(\cos \frac{\theta+2 \pi k}{q}+i \sin \frac{\theta+2 \pi k}{q}\right), \quad$ for k an integer	

Trigonometry

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$	Length of arc $=r \theta$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$	Area of segment $=\frac{1}{2} r^{2}(\theta-\sin \theta)$
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$	Area of sector $=\frac{1}{2} r^{2} \theta$
Identities	
$\cos ^{2} x+\sin ^{2} x=1$	$1+\tan ^{2} x=\sec ^{2} x$
$\cos (x \pm y)=\cos x \cos y \overline{+} \sin x \sin y$	$\begin{aligned} \cos 2 x & =\cos ^{2} x-\sin ^{2} x \\ & =2 \cos ^{2} x-1 \\ & =1-2 \sin ^{2} x \end{aligned}$
$\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$	$\sin 2 x=2 \sin x \cos x$
$\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
$\cos A \cos B=\frac{1}{2}(\cos (A-B)+\cos (A+B))$	$\sin A \cos B=\frac{1}{2}(\sin (A+B)+\sin (A-B))$
$\sin A \sin B=\frac{1}{2}(\cos (A-B)-\cos (A+B))$	$\cos A \sin B=\frac{1}{2}(\sin (A+B)-\sin (A-B))$

Note: Any additional formulas identified by the examination panel as necessary will be included in the body of the particular question.

Copyright

© School Curriculum and Standards Authority, 2016
This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

This document is valid for teaching and examining until 31 December 2021.

> Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street
> CANNINGTON WA 6107

