SAMPLE COURSE OUTLINE

PHYSICAL EDUCATION STUDIES
ATAR YEAR 11

Acknowledgement of Country

Kaya. The School Curriculum and Standards Authority (the Authority) acknowledges that our offices are on Whadjuk Noongar boodjar and that we deliver our services on the country of many traditional custodians and language groups throughout Western Australia. The Authority acknowledges the traditional custodians throughout Western Australia and their continuing connection to land, waters and community. We offer our respect to Elders past and present.

Copyright

© School Curriculum and Standards Authority, 2022

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International licence.

Disclaimer

Any resources such as texts, websites and so on that may be referred to in this document are provided as examples of resources that teachers can use to support their learning programs. Their inclusion does not imply that they are mandatory or that they are the only resources relevant to the course.

Sample course outline

Physical Education Studies - ATAR Year 11

Unit 1 and Unit 2

Week	Key teaching points	Assessment
1	Developing physical skills and tactics develop a range of sport-specific movement skills and techniques to enhance performance select, adapt and apply skills and techniques in games and other competitive situations select and apply tactics to solve sport specific tactical problems use of space positioning decision making Note: The above content areas are ongoing and will be addressed throughout the practical skill development teaching and learning activities. Functional anatomy bones humerus fibula radius fibula metacarpals huma pelvis phalanges femur sternum tarsals femur sternum tarsals muscles biceps quadriceps soleus triceps hamstrings abdominal gastrocnemius tibialis gluteus maximus deltoid adductor pectorals hip flexors	
2–3	■ latissimus dorsi Functional anatomy ■ structure and function of the circulatory system ■ heart ■ arteries ■ veins ■ capillaries ■ blood ■ structure and function of the respiratory system ■ lungs, diaphragm, alveoli (gaseous exchange) ■ inspiration (inhalation) □ diaphragm contracts □ thoracic cavity expands □ air pressure in the lungs drops □ air is drawn into lungs due to pressure difference ■ expiration (exhalation) □ diaphragm relaxes □ pleural cavity contracts □ air pressure in the lungs increases □ air pressure in the lungs increases □ air is pushed out of the lungs	

Week	Key teaching points	Assessment
4–5	Functional anatomy	
6–7	 Biomechanics definition of the following terms: linear motion angular motion general motion projectile motion application of projectile motion to sport in relation to: optimal projection parabolic trajectory release of projectiles angle velocity height 	
8	Biomechanics application of linear motion to sport in relation to: speed velocity acceleration	•
9	Biomechanics definition of the principle of balance and how it applies to sport in relation to: base of support height of centre of gravity line of centre of gravity mass static balance dynamic balance	

Week	Key teaching points	Assessment
10–11	 Biomechanics definition of Newton's First, Second and Third Laws of Motion, and how they apply to sporting contexts definition of the three classes of levers axis (fulcrum) resistance (load) force (effort) 	Task 1: topic test - functional anatomy; biomechanics (8 %)
12–13	 Motor learning and coaching classification of motor skills gross fine open closed discrete serial continuous Fitts and Posner phases of motor learning and how they can be used to develop/improve specific physical skills 	
14–15	 Motor learning and coaching types of cues used to improve performance visual verbal proprioceptive information processing model during skill performance identification of stimuli/input response identification/decision making response/output feedback 	Task 2: sport 1 performance – developing physical skills and tactics (15%)
16–17	 Motor learning and coaching types of feedback intrinsic (inherent) extrinsic (augmented) terminal knowledge of results, knowledge of performance concurrent verbal non-verbal purpose of feedback reinforcement motivation 	Task 3: Semester 1 written examination (15%)
18	Exercise physiology responses to physical activity heart rate (HR) stroke volume blood pressure (BP) cardiac output respiratory rate perspiration blood redistribution	

Week	Key teaching points	Assessment
19	Exercise physiology Iong-term cardiovascular and respiratory effects of training cardiac hypertrophy heart rate (HR) stroke volume blood pressure (BP) blood volume/haemoglobin maximum oxygen uptake (VO ₂ max) capillarisation ventilation oxygen exchange	
20	utilisation of carbohydrates, fats and proteins as energy sources for physical activity	Task 4: biomechanical analysis – biomechanics; exercise physiology; motor learning and coaching (10%)
21–22	 Exercise physiology the energy systems and their response to physical activity anaerobic adenosine triphosphate creatine phosphate (ATP-CP) lactic acid aerobic 	
23	 Exercise physiology relationship between energy systems and types of physical activity the energy system continuum 	
24–25	 Exercise physiology interrelationship between training methods, principles of training and fitness components training methods resistance training – isometric, isotonic, isokinetic interval training (short and long) continuous training circuit training fartlek flexibility plyometrics 	

Week	Key teaching points	Assessment
26–27	Exercise physiology principles of training progressive overload frequency intensity time (duration) type specificity reversibility (detraining) components of fitness cardiorespiratory endurance muscular strength muscular endurance flexibility body composition agility balance coordination reaction time speed power	Task 5: topic test – exercise physiology (12%)
28	Sports psychology psychological considerations for improved performance and achieving the ideal performance state ('the zone') motivation self-confidence stress management concentration or attentional control – Nideffer's model arousal regulation for optimal performance, including the inverted U hypothesis	
29	 Sports psychology influence of age, skill level, and type of activity on motivation, arousal regulation (inverted U hypothesis), concentration in physical activity goal setting characteristics of goals (SMARTER) types of goals performance outcome process 	
30	Examination revision	Task 6: sport 2 performance – developing physical skills and tactics (15%) Task 7: Semester 2 written examination (25%)