PHYSICS ATAR COURSE YEAR 12

FORMULAE AND DATA BOOKLET

2018

Gravity and motion

Average velocity	$v_{\mathrm{av}}=\frac{s}{t}$		
Equations of motion	$v=u+a t$	$s=u t+1 / 2 a t^{2}$	$v^{2}=u^{2}+2 a s$
Force	$F_{\text {net }}=m a$		
Weight force	$F=m g$		
Kinetic energy	$E_{\mathrm{k}}=1 / 2 m v^{2}$		
Gravitational potential energy	$E_{\mathrm{p}}=m g \Delta h$		
Work done	$W=F s=\Delta E$		
Equations of circular motion	$v=\frac{2 \pi r}{T}$	$a_{\mathrm{c}}=\frac{\nu^{2}}{r}$	$F_{\mathrm{c}}=m a_{\mathrm{c}}=\frac{m \nu^{2}}{r}$
Newton's law of universal gravitation	$F=G \frac{m_{1} m_{2}}{r^{2}}$		
Kepler's 3rd law	$T^{2}=\frac{4 \pi^{2}}{G M} r^{3}$		
Gravitational field strength	$g=G \frac{M}{r^{2}}$		
Moment of a force (force at angle θ to lever arm)	$\tau=r F \sin \theta$		

Note: the variable t refers to the 'time taken', sometimes referred to as the 'change in time' or Δt.

Wave particle duality and the quantum theory
Wave period

$$
T=\frac{1}{f}
$$

$$
\text { Wave equation } \quad c=f \lambda
$$

$$
\text { Energy of photon } \quad E=h f
$$

$$
\text { Energy transitions } \quad \Delta E=E_{2}-E_{1}=h f
$$

$$
\text { Photoelectric effect } \quad E_{\mathrm{k}}=h f-\mathrm{W}
$$

$$
\text { De Broglie wavelength } \quad \lambda=\frac{h}{p}
$$

Electromagnetism

Coulomb's law
Electric field strength
Magnetic field strength
Magnetic force on a
charged particle
Magnetic force on a current-carrying conductor

Particle motion in a magnetic field
$r=\frac{m v}{q B}$
Torque on a coil
$\tau=r F$
Magnetic flux
Electromagnetic induction
$\Phi=B A_{\perp}$
induced emf $=\ell v B \quad$ where $v \perp B$
induced emf $=-N \frac{\left(\Phi_{2}-\Phi_{1}\right)}{t}=-N \frac{\Delta \Phi}{t}=-N \frac{\Delta\left(B A_{\perp}\right)}{t}$
AC generator $\mathrm{emf}_{\text {max }}=2 N \ell v B=2 \pi N B A_{\perp} f \quad e m f_{\text {rms }}=\frac{e m f_{\text {max }}}{\sqrt{2}}$
Ohm's law
$V=I R$
Electric current
$I=\frac{q}{t}$
Ideal transformer turns ratio $\quad \frac{V_{\mathrm{P}}}{V_{\mathrm{s}}}=\frac{N_{\mathrm{P}}}{N_{\mathrm{s}}}$
Power
$P=V I$

Special relativity

Relativistic effects

$$
\begin{array}{ll}
\ell=\ell_{0} \sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)} & t=\frac{t_{0}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}} \\
u=\frac{v+u^{\prime}}{1+\frac{v u^{\prime}}{c^{2}}} & u^{\prime}=\frac{u-v}{1-\frac{v u}{c^{2}}}
\end{array}
$$

Relativistic momentum

$$
p_{v}=\frac{m v}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}
$$

Mass-energy equivalence

$$
E=\frac{m c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

The Standard Model

Elementary particles

Mean acceleration due to gravity on the Earthg	$9.80 \mathrm{~m} \mathrm{~s}^{-2}$
Mean acceleration due to gravity on the Moon...... $g_{\text {M }}$	$=1.62 \mathrm{~m} \mathrm{~s}^{-2}$
Mean radius of the Earth $R_{\text {E }}$	$=6.37 \times 10^{6} \mathrm{~m}$
Mass of the Earth .. M_{E}	$=5.97 \times 10^{24} \mathrm{~kg}$
Mean radius of the Sun $R_{\text {S }}$	$=6.96 \times 10^{8} \mathrm{~m}$
Mass of the Sun.. $M_{\text {S }}$	$=1.99 \times 10^{30} \mathrm{~kg}$
Mean radius of the Moon................................. $R_{\text {M }}$	$=1.74 \times 10^{6} \mathrm{~m}$
Mass of the Moon... M_{M}	$=7.35 \times 10^{22} \mathrm{~kg}$
Mean Earth-Moon distance	$3.84 \times 10^{8} \mathrm{~m}$
Mean Earth-Sun distance	$=1.50 \times 10^{11} \mathrm{~m}$
Mass of electron ... $m_{\text {e }}$	$=9.11 \times 10^{-31} \mathrm{~kg}$
Mass of proton.. m_{p}	$=1.67 \times 10^{-27} \mathrm{~kg}$
Tonne... 1 t	$=10^{3} \mathrm{~kg}$

Physical constants

Speed of light in vacuum or	
Electron charge ...e	$=-1.60 \times 10^{-19} \mathrm{C}$
Planck constant ... h	$=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Newtonian constant of gravitation G	$=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Electron volt... 1 eV	$=1.60 \times 10^{-19} \mathrm{~J}$
Electronic constant .. ε_{0}	$=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
Magnetic constant ... μ_{0}	$=4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}=1.26 \times 10^{-6} \mathrm{NA}^{-2}$

Electromagnetic spectrum

Note: shaded areas represent regions of overlap.

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10^{12}	tera	T	10^{-3}	milli	m
10^{9}	giga	G	10^{-6}	micro	μ
10^{6}	mega	M	10^{-9}	nano	n
10^{3}	kilo	k	10^{-12}	pico	p

Mathematical expressions

Quadratic equations

Given $a x^{2}+b x+c=0, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Triangles

The following expressions apply to the triangle ABC as shown:

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a=\sqrt{b^{2}+c^{2}-2 b c \cos A}
\end{aligned}
$$

This page has been left blank intentionally

ACKNOWLEDGEMENTS

$\begin{array}{ll}\text { Elementary } & \text { Adapted from Standard Model image: MissMJ. (2006). File:Standard Model of } \\ \text { particles } & \text { Elementary Particles.svg. Retrieved June, 2016, from } \\ & \text { https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_ } \\ & \text { Particles.svg } \\ & \text { Used under Creative Commons Attribution 3.0 Unported licence. }\end{array}$

Copyright

© School Curriculum and Standards Authority, 2016
This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.
This document is valid for teaching and examining until 31 December 2018.

