ACCOUNTING AND FINANCE ATAR COURSE SPECIFICATIONS BOOKLET

2018

Calculation for depreciation

Straight-line method

$$
\begin{array}{ll}
\begin{array}{l}
\text { Depreciation expense } \\
\text { per annum }
\end{array} & =\frac{\text { Original cost - Residual value }}{\text { Useful life }} \\
& \text { or } \\
& =\frac{\text { Depreciable amount }}{\text { Useful life }}
\end{array}
$$

Reducing/Diminishing balance method

Depreciation expense $\quad=$ Carrying amount \times Depreciation rate
Carrying amount = Original cost - Accumulated depreciation

Preparation of ratios

Results from calculations may be presented either as a percentage or as a ratio, to two decimal places.

Ratio	Method of calculation
Profit	$\underline{\text { Profit (after income tax) }{ }^{\text {A }}}$
	Total revenue
Debtor's collection	$\frac{\text { Average debtors }}{\text { Net credit sales }^{\text {B }}} \times 365$
Inventory/stock turnover	Cost of sales ${ }^{\text {C }}$
	Cost of average inventory
Debt to equity	Total liabilities
	Equity (end)
Working capital/current	Current assets
	Current liabilities
Quick asset	Current assets (excluding inventory and prepayments)
	Current liabilities (excluding bank overdraft)
Rate of return on assets	Profit before income tax + Interest expense
	Average total assets
Times interest earned	Profit before income tax + Interest expense
	Interest expense
Earnings per share	Profit (after income tax)
	Weighted average number of ordinary shares issued
Price/earnings	Market price per ordinary share
	Earnings per share
Dividend yield	Annual dividend per ordinary share
	Market price per ordinary share

A: Income tax is to be charged at the specified company rate
B: Net sales = Sales revenue - Sales returns and allowances - Discount allowed
C: Cost of sales (total) = Cost of sales (account) + Import duties + Freight inwards - Discount received

Cost accounting and variance analysis

Standard cost per
unit

Predetermined
overhead recovery
rate

Standard input quantity
Cost of
allowed per output unit

Total estimated manufacturing overheads

Total estimated allocation base \quad| Selling/quotation price per input unit |
| :--- |
| price |

Direct material variances

Price variance	$=(A P-S P) \times A Q P$ i.e. (Actual price of input - Standard price of input) \times Actual quantity of input purchased
Usage variance	$=(A Q I-S Q A) \times S P$ i.e. (Actual quantity of input Issued - Standard quantity of input allowed for actual output) \times Standard price of input
where SQA	$\begin{aligned} &= S Q \times A O \\ & \text { i.e. Standard quantity per unit } \times \text { Actual output in units produced } \end{aligned}$

Direct labour variances

Rate variance $=(A R-S R) \times A D L H$
i.e. (Actual rate per direct labour hour worked - Standard rate per direct labour hour worked) \times Actual direct labour hours worked

```
Efficiency variance \(=(\) ADLH - SDLHA \() \times\) SR
    i.e. (Actual direct labour hours worked - Standard direct labour hours
    allowed for actual output) \(\times\) Standard rate per direct labour hour
where SDLHA \(=\) SDLH \(\times\) AO
    i.e. Standard direct labour hours allowed per unit \(\times\) Actual output in units
    produced
```


Cost volume profit analysis for profit planning

Standard abbreviations include:

FC = Fixed costs
OC = Opportunity costs
QS = Quantity sold or budgeted
SP = Selling price
TC = Total costs
TFC = Total fixed costs
TVC $=$ Total variable costs
TR = Total Revenue
VC = Variable costs

Basic cost profit concepts

Profit $=T R-T C$
Profit $=(S P \times Q S)-[(V C \times Q S)+T F C]$
TC = TVC + TFC
Unit cost $=\frac{T C}{\text { Number of units }}$

Calculation of contribution margin

Contribution margin per unit = SP per unit - VC per unit
or
Total contribution margin $=$ TR - TVC
or
Contribution margin ratio $=\frac{\text { Contribution margin per unit }}{\text { SP per unit }}$

Break-even point for a single product firm

$$
\begin{aligned}
& \text { Break-even point (in units) } \\
& \text { or } \\
& \text { Break-even point (in sales dollars) }
\end{aligned}=\frac{\text { TFC }}{\text { Contribution margin per unit }}=\frac{\text { TFC }}{\text { Contribution margin ratio }}
$$

Break-even point in total units in multi-product firm
Break-even point (in units) $=\frac{\text { TFC }}{\text { Weighted average contribution margin per unit }}$

Weighted average contribution margin

```
Weighted average
contribution margin \(=\quad \sum\) (Contribution margin per unit \(\times\) Sales mix \%)
per unit where \(\sum\) means the sum of a set of numbers
```

Sales mix \% $\quad=\frac{\text { number of units sold of a given product }}{\text { total units sold of all products }} \times 100$

Forecast revenue for target profit

$\begin{aligned} & \text { Forecast revenue } \\ & \text { (in sales dollars) }\end{aligned}=$ TVC + TFC + Target profit
$\begin{aligned} & \text { Forecast target } \\ & \text { revenue (in units) }\end{aligned} \quad=\frac{\text { TFC }+ \text { Target profit }}{\text { Contribution margin per unit }}$

Margin of safety

Margin of safety $=$ Actual or budgeted sales - break-even sales
Margin of safety $\%=\frac{\text { Margin of safety in dollars }}{\text { Total actual/budgeted sales }} \times 100$

Special order

Gain/Loss $\quad=(S P \times Q S)-(V C \times Q S)-$ new FC - OC i.e. Special order income - Special order variable costs - New or additional fixed costs - Opportunity costs
where OC $=$ Units forgone in usual production \times Usual contribution margin

Capital investment/budgeting

Net present value (NPV) method (time value of money)

Present value of \$1 at the end of future periods

Periods	2\%	3\%	4\%	5\%	6\%	7\%	8\%	9\%	10\%	12\%	14\%	16\%
1	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091	0.8929	0.8772	0.8621
2	0.9612	0.9426	0.9246	0.9070	0.8900	0.8734	0.8573	0.8417	0.8264	0.7972	0.7695	0.7432
3	0.9423	0.9151	0.8890	0.8638	0.8396	0.8163	0.7938	0.7722	0.7513	0.7118	0.6750	0.6407
4	0.9238	0.8885	0.8548	0.8227	0.7921	0.7629	0.7350	0.7084	0.6830	0.6355	0.5921	0.5523
5	0.9057	0.8626	0.8219	0.7835	0.7473	0.7130	0.6806	0.6499	0.6209	0.5674	0.5194	0.4761
6	0.8880	0.8375	0.7903	0.7462	0.7050	0.6663	0.6302	0.5963	0.5645	0.5066	0.4556	0.4104
7	0.8706	0.8131	0.7599	0.7107	0.6651	0.6227	0.5835	0.5470	0.5132	0.4523	0.3996	0.3538
8	0.8535	0.7894	0.7307	0.6768	0.6274	0.5820	0.5403	0.5019	0.4665	0.4039	0.3506	0.3050
9	0.8368	0.7664	0.7026	0.6446	0.5919	0.5439	0.5002	0.4604	0.4241	0.3606	0.3075	0.2630
10	0.8203	0.7441	0.6756	0.6139	0.5584	0.5083	0.4632	0.4224	0.3855	0.3220	0.2697	0.2267
11	0.8043	0.7224	0.6496	0.5847	0.5268	0.4751	0.4289	0.3875	0.3505	0.2875	0.2366	0.1954
12	0.7885	0.7014	0.6246	0.5568	0.4970	0.4440	0.3971	0.3555	0.3186	0.2567	0.2076	0.1685
13	0.7730	0.6810	0.6006	0.5303	0.4688	0.4150	0.3677	0.3262	0.2897	0.2292	0.1821	0.1452
14	0.7579	0.6611	0.5775	0.5051	0.4423	0.3878	0.3405	0.2992	0.2633	0.2046	0.1597	0.1252
15	0.7430	0.6419	0.5553	0.4810	0.4173	0.3624	0.3152	0.2745	0.2394	0.1827	0.1401	0.1079
16	0.7284	0.6232	0.5339	0.4581	0.3936	0.3387	0.2919	0.2519	0.2176	0.1631	0.1229	0.0930
17	0.7142	0.6050	0.5134	0.4363	0.3714	0.3166	0.2703	0.2311	0.1978	0.1456	0.1078	0.0802
18	0.7002	0.5874	0.4936	0.4155	0.3503	0.2959	0.2502	0.2120	0.1799	0.1300	0.0946	0.0691
19	0.6864	0.5703	0.4746	0.3957	0.3305	0.2765	0.2317	0.1945	0.1635	0.1161	0.0829	0.0596
20	0.6730	0.5537	0.4564	0.3769	0.3118	0.2584	0.2145	0.1784	0.1486	0.1037	0.0728	0.0514
21	0.6598	0.5375	0.4388	0.3589	0.2942	0.2415	0.1987	0.1637	0.1351	0.0926	0.0638	0.0443
22	0.6468	0.5219	0.4220	0.3418	0.2775	0.2257	0.1839	0.1502	0.1228	0.0826	0.0560	0.0382
23	0.6342	0.5067	0.4057	0.3256	0.2618	0.2109	0.1703	0.1378	0.1117	0.0738	0.0491	0.0329
24	0.6217	0.4919	0.3901	0.3101	0.2470	0.1971	0.1577	0.1264	0.1015	0.0659	0.0431	0.0284
25	0.6095	0.4776	0.3751	0.2953	0.2330	0.1842	0.1460	0.1160	0.0923	0.0588	0.0378	0.0245

Present value of an ordinary annuity of $\$ 1$ at the end of future periods

Periods	2\%	3\%	4\%	5\%	6\%	7\%	8\%	9\%	10\%	12\%	14\%	16\%
1	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091	0.8929	0.8772	0.8621
2	1.9416	1.9135	1.8861	1.8594	1.8334	1.8080	1.7833	1.7591	1.7355	1.6901	1.6467	1.6052
3	2.8839	2.8286	2.7751	2.7232	2.6730	2.6243	2.5771	2.5313	2.4869	2.4018	2.3216	2.2459
4	3.8077	3.7171	3.6299	3.5460	3.4651	3.3872	3.3121	3.2397	3.1699	3.0373	2.9137	2.7982
5	4.7135	4.5797	4.4518	4.3295	4.2124	4.1002	3.9927	3.8897	3.7908	3.6048	3.4331	3.2743
6	5.6014	5.4172	5.2421	5.0757	4.9173	4.7665	4.6229	4.4859	4.3553	4.1114	3.8887	3.6847
7	6.4720	6.2303	6.0021	5.7864	5.5824	5.3893	5.2064	5.0330	4.8684	4.5638	4.2883	4.0386
8	7.3255	7.0197	6.7327	6.4632	6.2098	5.9713	5.7466	5.5348	5.3349	4.9676	4.6389	4.3436
9	8.1622	7.7861	7.4353	7.1078	6.8017	6.5152	6.2469	5.9952	5.7590	5.3282	4.9464	4.6065
10	8.9826	8.5302	8.1109	7.7217	7.3601	7.0236	6.7101	6.4177	6.1446	5.6502	5.2161	4.8332
11	9.7868	9.2526	8.7605	8.3064	7.8869	7.4987	7.1390	6.8052	6.4951	5.9377	5.4527	5.0286
12	10.5753	9.9540	9.3851	8.8633	8.3838	7.9427	7.5361	7.1607	6.8137	6.1944	5.6603	5.1971
13	11.3484	10.6350	9.9856	9.3936	8.8527	8.3577	7.9038	7.4869	7.1034	6.4235	5.8424	5.3423
14	12.1062	11.2961	10.5631	9.8986	9.2950	8.7455	8.2442	7.7862	7.3667	6.6282	6.0021	5.4675
15	12.8493	11.9379	11.1184	10.3797	9.7122	9.1079	8.5595	8.0607	7.6061	6.8109	6.1422	5.5755
16	13.5777	12.5611	11.6523	10.8378	10.1059	9.4466	8.8514	8.3126	7.8237	6.9740	6.2651	5.6685
17	14.2919	13.1661	12.1657	11.2741	10.4773	9.7632	9.1216	8.5436	8.0216	7.1196	6.3729	5.7487
18	14.9920	13.7535	12.6593	11.6896	10.8276	10.0591	9.3719	8.7556	8.2014	7.2497	6.4674	5.8178
19	15.6785	14.3238	13.1339	12.0853	11.1581	10.3356	9.6036	8.9501	8.3649	7.3658	6.5504	5.8775
20	16.3514	14.8775	13.5903	12.4622	11.4699	10.5940	9.8181	9.1285	8.5136	7.4694	6.6231	5.9288
21	17.0112	15.4150	14.0292	12.8212	11.7641	10.8355	10.0168	9.2922	8.6487	7.5620	6.6870	5.9731
22	17.6580	15.9369	14.4511	13.1630	12.0416	11.0612	10.2007	9.4424	8.7715	7.6446	6.7429	6.0113
23	18.2922	16.4436	14.8568	13.4886	12.3034	11.2722	10.3711	9.5802	8.8832	7.7184	6.7921	6.0442
24	18.9139	16.9355	15.2470	13.7986	12.5504	11.4693	10.5288	9.7066	8.9847	7.7843	6.8351	6.0726
25	19.5235	17.4131	15.6221	14.0939	12.7834	11.6536	10.6748	9.8226	9.0770	7.8431	6.8729	6.0971

Net present value (NPV)

Present value	$=$	$\frac{\text { Net cash flow }}{(1+\mathrm{i})^{n}}$
where i	$=$	
n Interest rate		
n	$=$	Number of periods
NPV		

Payback period

Where annual net cash flows are constant:
Payback period $=\frac{\text { Initial cost of investment }}{\text { Annual net cash flow }}$
Results from calculations are to be presented in years and months.

Copyright

© School Curriculum and Standards Authority, 2016
This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

This document is valid for teaching and examining until 31 December 2018.

Published by the School Curriculum and Standards Authority of Western Australia

