

Government of Western Australia School Curriculum and Standards Authority

CHEMISTRY ATAR COURSE

DATA BOOKLET

2021

Periodic table of the elements	. 3
Formulae	.4
Units	.4
Constants	.4
Solubility rules for ionic solids in water	.4
Colours of selected substances	.5
α-amino acids6-	-7
Standard reduction potentials at 25 ºC	. 8

Copyright

© School Curriculum and Standards Authority, 2021

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons <u>Attribution 4.0 International (CC BY)</u> licence.

This document is valid for teaching and examining until 31 December 2021.

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107

	, ,		
18 14 AD03 14 AD03	A argon 39.95	36 kryption 83.80 83.80 86 86 86 86 731.3 131.3 131.3 131.3 131.3 131.3 131.3 86 86 86 86 86 86 86 86 86 86 86 86 86	71 LU Intetium 175.0 103 I 103 I awrencium
17	9 Huorine 19.00 chlorine 35.45	35 bromine 79.90 73.53 53 53 53 53 53 53 53 126.9 127.9 127.	70 Yterbium 173.0 102 Nobelium
16	8 000000000000000000000000000000000000	34 Selenium 78.97 78.97 78.97 78.97 78.97 127.6 84 84 900nium polonium polonium	69 Tm thulium 168.9 101 mendelevium
15	15 15 15 15 15 15 15 15 15 15 15 15 15 1	33 arsenic 74.92 51 51 121.8 83 83 83 83 83 83 83 83 83 121.8 121.8 121.8 121.8 121.8 121.8 121.8 121.92 121.92 121.8 121.8 121.92 121.93 121.	68 Erbium 167.3 100 fm fermium
14	6 12.01 ^{12.01} ^{12.01} ^{12.01} ^{28.09}	³² germanium 72.63 50 50 50 118.7 118.7 118.7 118.7 114 114 114 114	67 holmium 164.9 99 einsteinium
,	26.98 26.98	31 gallium gallium 114.8 8 114.8 8 114.8 8 114.8	eff dysprosium 162.5 38 38 38 38 38 californium
12		³⁰ ²¹⁰ 65.38 65.38 65.38 48 80 80 80 80 112.4 1122.4 1122.4 1122.4 1122.4 200.6 6 1122.4 80 80 80 80 80 80 80 80 80 80 80 80 80	65 terbium 158.9 97 berkelium
		29 copper 63.55 79 79 79 79 79 79 79 79 79 70 79 70 70 70 107.0	64 gadolinium 157.3 96 curium
0		28 nickel 58.69 58.69 58.69 78 106.4 106.4 195.1 110 110	63 europium 152.0 95 americium
Ø		27 cobalt 58.93 45 45 45 102.9 102.9 109 109 109	62 Samarium 150.4 94 Pu putonium
Ø		26 iron 55.85 44 101.1 101.1 100.2 190.2 190.2 190.2 108 hassium	61 promethium 93 93 neptunium
~		25 manganese 54.94 13 75 75 75 75 75 75 75 107 107 107	60 neodymium 144.2 92 92 92 238.0
Q		24 622.00 52.00 95.95 95.95 106 106 seaborgium	59 Praseodymium 140.9 91 91 231.0
Q		23 23 50.94 50.94 50.94 105 105 105 105 105	58 cerium 140.1 90 232.0 232.0
4		22 titanium 47.87 40 40 91.22 91.22 178.5 104 178.5	57 La Ianthanum 138.9 89 89 actinium
б		21 scandium 44.96 39 38.91 57−71 57−71 1athanoids 89−103 89−103	
р	Performance Perfo	20 calcium 40.08 38 87.62 56 56 56 56 56 56 56 56 56 38 88 88 88 88 88 88	d D
hydrogen 1 008		Potassium 39.10 37 39.10 37 35 55 55 55 55 55 55 37 37 132.9 87 87 87	Key: Atomic number Symbol Standard atomic weight

[Data source: The International Union of Pure and Applied Chemistry Periodic Table of the Elements (2018)]

Periodic table of the elements

Formulae

Number of moles	п	=	$\frac{m}{M} = \frac{\text{mass}}{\text{molar mass}}$
Number of moles of solute	п	=	cV
Number of moles of a gas at STP	п	=	<u>V</u> 22.71
ldeal gas law	PV	=	nRT
Parts per million	ppm	=	mass of solute (mg)
pH of a solution	рН	=	mass of solution (kg) – log ₁₀ [H⁺]
	•		10

Units

Volumes are given in the units of litres (L), or millilitres (mL) Temperatures are given in the units of degrees Celsius (°C) or kelvin (K) It may be assumed that 0.0 °C = 273.15 K Energy changes are given in kilojoules (kJ) Pressures are given in kilopascals (kPa) Solution concentrations are given in the units moles per litre (mol L⁻¹), grams per litre (g L⁻¹) or parts per million (ppm)

Constants

Universal gas constant, R = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Avogadro constant, N = $6.022 \times 10^{23} \text{ mol}^{-1}$ Volume of 1.00 mol of an ideal gas at 0.0 °C and 100.0 kPa is 22.71 L STP is 0.0 °C and 100.0 kPa Equilibrium constant for water at 25 °C, K_w = 1.00×10^{-14}

Solubility rules for ionic solids in water

Soluble in water

Soluble	Exceptions		
	Insoluble	Slightly soluble	
Most chlorides	AgCł	PbCl ₂	
Most bromides	AgBr	PbBr ₂	
Most iodides	AgI, PbI ₂		
All nitrates	No exceptions		
All ethanoates			
Most sulfates	SrSO ₄ , BaSO ₄ , PbSO ₄	$CaSO_4$, Ag_2SO_4	

Insoluble in water

Insoluble	Exceptions		
	Soluble	Slightly soluble	
Most hydroxides	NaOH, KOH, Ba(OH) ₂ NH ₄ OH*, AgOH**	Ca(OH) ₂ , Sr(OH) ₂	
Most carbonates	$Na_{2}CO_{3}, K_{2}CO_{3}, (NH_{4})_{2}CO_{3}$		
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄		
Most sulfides	$Na_{2}S, K_{2}S, (NH_{4})_{2}S$		

* NH_3 dissolves in water to form both NH_3 (aq) and NH_4^+ (aq)/OH⁻(aq) ** Ag^+ (aq) reacts with OH⁻(aq) to form insoluble Ag_2O

> Soluble = more than 0.1 mole dissolves per litre Slightly soluble = between 0.01 and 0.1 mole dissolves per litre Insoluble = less than 0.01 mole dissolves per litre

Colours of selected substances

In general, ionic solids have the same colour as that of any coloured ion they contain. Two colourless ions in general produce a white solid. Selected exceptions to these two basic rules are noted below.

Ionic Solid	Colour
copper(II) carbonate	green
copper(II) chloride	green
copper(II) oxide	black
copper(II) sulfide	black
lead(II) iodide	yellow
lead(II) sulfide	grey
manganese(IV) oxide	black
silver carbonate	yellow
silver iodide	pale yellow
silver oxide	brown
silver sulfide	black

Other coloured substances

Most gases and liquids are colourless, and most metals are silvery or grey. Selected exceptions to these basic rules are noted below.

Substance	Colour
copper(s)	salmon pink
gold(s)	yellow
nitrogen dioxide(g)	brown
sulfur(s)	yellow

Coloured halogens

Halogen	Colour of free element
F ₂ (g)	yellow
Cl ₂ (g)	greenish-yellow
$Br_2(\ell)$	red
I ₂ (g)	purple

Halogen	Colour of halogen in aqueous solution
Cl ₂ (aq)	pale yellow
Br ₂ (aq)	orange
I ₂ (aq)	brown

Halogen	Colour of halogen in organic solvent
Br ₂	red
I ₂	purple

Coloured ions in aqueous solution

Cation	Colour
Cr ³⁺	deep green
Co ²⁺	pink
Cu ²⁺	blue
Fe ²⁺	pale green
Fe ³⁺	pale brown
Mn ²⁺	pale pink
Ni ²⁺	green

Anion	Colour
CrO ₄ ^{2–}	yellow
Cr ₂ O ₇ ²⁻	orange
MnO ₄ -	purple

α–amino acids				
Name	Symbol	Structure		
alanine	Ala	CH ₃		
		H ₂ N — CH — COOH		
arginine	Arg	NH		
		$\begin{array}{c} \\ CH_2 -\!\!\!-\!\!\!- CH_2 -\!\!\!- CH_2 -\!\!\!- NH -\!\!\!- C -\!\!\!- NH_2 \\ \end{array}$		
		H ₂ N — CH— COOH		
asparagine	Asn	0 		
		$CH_{2} - CH_{2} - NH_{2}$ $H_{2}N - CH - COOH$		
		$H_2 N - CH - COOH$		
aspartic acid	Asp	CH ₂ — COOH		
		$H_2 N - CH - COOH$		
cysteine	Cys	CH ₂ — SH		
		H ₂ N — CH— COOH		
glutamine	Gln	0 		
		$CH_2 - CH_2 - CH_2 - NH_2$		
		H ₂ N — CH— COOH		
glutamic acid	Glu	CH ₂ — CH ₂ — COOH		
		$H_2 N \longrightarrow CH \longrightarrow COOH$		
glycine	Gly	$H_2N - CH_2 - COOH$		
histidine	His	N		
		CH ₂ —N H		
		$H_2 N - CH - COOH$		
isoleucine	Ile	$CH_3 \longrightarrow CH \longrightarrow CH_2 \longrightarrow CH_3$		
		$CH_{3} - CH - CH_{2} - CH_{3}$ $ $ $H_{2}N - CH - COOH$		

Name	Symbol	Structure
leucine	Leu	$CH_3 - CH - CH_3$ CH_2
		H ₂ N — CH — COOH
lysine	Lys	$CH_2 - CH_2 - CH_2 - CH_2 - NH_2$
		$H_2 N - CH - COOH$
methionine	Met	$CH_2 - CH_2 - CH_3$
		H ₂ N — CH — COOH
phenylalanine	Phe	
		$H_2 N \longrightarrow CH \longrightarrow COOH$
proline	Pro	H COOH N
serine	Ser	CH ₂ OH
		 Н ₂ N — CH— СООН
threonine	Thr	CH ₃ — CH — OH
		H ₂ N — CH— COOH
tryptophan	Trp	CH ₂
		$H_2 N \longrightarrow CH \longrightarrow COOH$
tyrosine	Tyr	CH ₂ —OH H ₂ N—CH—COOH
valine	Val	$CH_{3} - CH - CH_{3}$ $ $ $H_{2}N - CH - COOH$
		-

Half-reaction		E°(volts)
F ₂ (g) + 2 e⁻ <i>≓</i>	2 F⁻(aq)	+ 2.89
H ₂ O ₂ (aq) + 2 H⁺(aq) + 2 e⁻ <i>≕</i>	2 H ₂ O(ℓ)	+ 1.76
PbO ₂ (s) + SO ₄ ^{2–} (aq) + 4 H⁺(aq) + 2 e ⁻ ≓	$PbSO_4(s) + 2 H_2O(\ell)$	+ 1.69
2 HCłO(aq) + 2 H⁺(aq) + 2 e⁻ ≓	$C\ell_2(g) + 2 H_2O(\ell)$	+ 1.63
MnO₄⁻(aq) + 8 H⁺(aq) + 5 e⁻ ≓	$Mn^{2+}(aq) + 4 H_2O(l)$	+ 1.51
Au³⁺(aq) + 3 e⁻ ≓	Au(s)	+ 1.50
HCłO(aq) + H⁺(aq) + 2 e⁻ ≓	$C\ell^{-}(aq) + H_{2}O(\ell)$	+ 1.49
PbO ₂ (s) + 4 H⁺(aq) + 2 e⁻ ≓	$Pb^{2+}(aq) + 2 H_2O(l)$	+ 1.46
Cℓ₂(g) + 2 e⁻ ਵ	2 Cℓ⁻(aq)	+ 1.36
Cr ₂ O ₇ ²⁻ (aq) + 14 H⁺(aq) + 6 e⁻ ≓	2 Cr ³⁺ (aq) + 7 H ₂ O(<i>l</i>)	+ 1.36
O ₂ (g) + 4 H⁺(aq) + 4 e⁻ ≓	2 H ₂ O(ℓ)	+ 1.23
Br ₂ (ℓ) + 2 e⁻ ਵ	2 Br ⁻ (aq)	+ 1.08
Ag⁺(aq) + e⁻ ≓	Ag(s)	+ 0.80
Fe³+(aq) + e⁻ <i>⇐</i>	Fe ²⁺ (aq)	+ 0.77
O ₂ (g) + 2 H⁺(aq) + 2 e⁻ ≓	$H_2O_2(aq)$	+ 0.70
I₂(s) + 2 e⁻ ≓	2 I⁻(aq)	+ 0.54
$O_2(g) + 2 H_2O(\ell) + 4 e^- \rightleftharpoons$	4 OH⁻(aq)	+ 0.40
Cu²+(aq) + 2 e⁻ ≓	Cu(s)	+ 0.34
S(s)+ 2 H⁺(aq) + 2 e⁻ ≓	H ₂ S(aq)	+ 0.17
2 H⁺(aq) + 2 e⁻ ≓	$H_2(g)$	0 exactly
Pb²+(aq) + 2 e⁻ ≓	Pb(s)	- 0.13
Sn²+(aq) + 2 e⁻ <i>≓</i>	Sn(s)	- 0.14
Ni²⁺(aq) + 2 e⁻ ≓	Ni(s)	- 0.24
Co²+(aq) + 2 e⁻ <i>≕</i>	Co(s)	- 0.28
PbSO₄(s) + 2 e⁻ ≓	Pb(s) + SO ₄ ^{2–} (aq)	- 0.36
Cd²+(aq) + 2 e⁻ ≓		- 0.40
2 CO ₂ (g) + 2 H⁺(aq) + 2 e⁻ ≓	$H_2C_2O_4(aq)$	- 0.43
Fe²⁺(aq) + 2 e⁻ <i>ਵ</i>	Fe(s)	- 0.44
Cr³⁺(aq) + 3 e⁻ <i>ਵ</i>	Cr(s)	- 0.74
Zn²⁺(aq) + 2 e⁻ ≓		- 0.76
2 H ₂ O(ℓ) + 2 e ⁻ ≓	H ₂ (g) + 2 OH⁻(aq)	- 0.83
Mn²⁺(aq) + 2 e⁻ ≓	Mn(s)	– 1.18
Aℓ³⁺(aq) + 3 e⁻ ≓	Al(s)	– 1.68
Mg²⁺(aq) + 2 e⁻ ≓	Mg(s)	- 2.36
Na⁺(aq) + e⁻ 辛	Na(s)	- 2.71
Ca²+(aq) + 2 e⁻ <i>≓</i>		- 2.87
Sr²⁺(aq) + 2 e⁻ ≓		- 2.90
Ba²⁺(aq) + 2 e⁻ <i>≓</i>		- 2.91
K⁺(aq) + e⁻ ≓	K(s)	- 2.94

[Data source: Aylward, G.H., & Findlay, T. (2014). SI Chemical Data (7th ed.). Queensland: John Wiley & Sons Australia, Ltd.]