

ATAR course examination 2018

Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section One: Core content

Part A: Multiple-choice

1	b
2	С
3	d
4	С
5	а
6	d
7	b
8	d
9	а
10	b

Part B: Extended response

Question 11

30% (58 Marks)

(15 marks)

8 cm

Description		Marks
correct view (three faces - pictorial)		1–3
	Sub-total	3
Common to either pictorial or orthographic view		
external dimensions - all four correct		1–4
neatness overall		1
	Sub-total	5
If uses pictorial view		
length, width and depth in proportion		1–2
correct position and proportion of the rectangular slot		1–2
correct position and proportion of holes		1–2
correct position and proportion of semi-circular opening		1
	Sub-total	7
If uses orthographic view		
length and width full size		1–2
correct position and size of the rectangular slot		1–2
correct position and size of holes as hidden detail		1–2
correct position and size of semi-circular opening as hidden detail		1
	Sub-total	7
	Total	15

MARKING KEY

40% (68 Marks)

10% (10 Marks)

Question 12

(12 marks)

Complete the table below by naming the material you have studied this year that is **most** suitable for each of the given applications and give **one** reason why that material is fit for purpose.

Description	Marks
One mark per correct material and one mark for fitness of purpose	
names a suitable material for application	1
states reason material is fit for purpose	
Subtotal	2
Total	12
Accept other relevant answers	

Application	Material	Fitness for purpose
frames and supports for	aluminium	non-corrosive, malleable,
solar panels		strong
tubing on the panels of	copper	excellent conductor of heat,
solar hot water systems		ductile
fibre optic cable	acrylic fibre	easy to bend, internally reflects light
lenses in protective glasses	polycarbonate	impact resistant, hard to crack
metal coating the surface of	zinc	stops iron from corroding by forming a (oxide) coating on
structural steel		the surface that does not
		flake off
3D printer filament	acrylonitrile butadiene (ABS)	relatively low melting point, hard setting

Question 13

(a)

Calculate the volume of metal in one of these cables.

Description	Marks
R = 0.0125 m	1
$V = \pi R^2 I$	1
$= \pi \times 0.0125^2 \times 560$	1
=0.2749 m ³	1
Total	3

(b) Determine the total mass of steel in all six cables.

(3 marks)

	Description	Marks
Density = 7850 kg m^3		1
Mass	= density x volume	1
	= 7850 x 0.2749 x 6	1
	= 12 948 kg	1
	Total	3

(c) Calculate the length of the cable between the terminals when the carriage is centrally located across the gap. A diagram is required in your answer. (5 marks)

Description	Marks
540 m 13 m L	1
vertical drop in centre of cable = $73 - 60 = 13$ m	1
$L^2 = (540/2)^2 + 13^2 = 73069$	1
L = 270.3 m	1
length of cable = 2 x 270.3 = 540.6 = 541 m	1
Total	5

(d) Explain, including a relevant calculation, why each counterweight has a mass of 10 tonnes. (3 marks)

Description	Marks
maximum downwards weight on cable when carriage is at the centre	1
weight of cable + weight of car = 12.9 + 7 = 19.9 tonne	
downwards weight on each end needs to equal (or slightly exceed) half of this value therefore ten tonne each end will do this	
Total	3
Accept other relevant answers	

(17 marks)

(3 marks)

ENGINEERING STUDIES

(e) Calculate the energy expended per round trip in joules.

(3 marks)

	Description	Marks
Energy	= Pt	
0.75E	= Pt	1
E	= (57 000 x 4.7 x 60 x 2)/0.75	1
	$= 4.286 \times 10^7 \text{ J}$	1
	Total	3

MARKING KEY

Question 14

(14 marks)

 (a) The glass and aluminium greenhouse is being set onto a 75 mm thick concrete pad which is the exact size of the footprint of the greenhouse. Calculate the volume of concrete required in cubic metres.
 (3 marks)

Description	Marks
Area = $(4.3 \times 3.4) - (1.1 \times 1.3 \times 2)$	1
= 11.76 m ²	1
Volume = $11.76 \times 0.075 = 0.882 \text{ m}^3$	
Total	3

(b) Give **two** reasons why steel is the preferred material for securing the greenhouse.

(2 marks)

Description	Marks
Any two of:	
strong	1 0
resists deformation	1-2
high tensile strength.	
Total	2
Accept other relevant answers	

(c) Calculate the length of cable required for all three gable ends assuming that each cable needs an extra 100 mm in length to tie it to a peg on either side. (5 marks)

	Description		Marks
Length of cable	= ground to top of wall + top of wall to apex = $[(1.9^2)+(0.5^2)]^{0.5} + [(1.05^2)+(0.5^2)]^{0.5}$ =1.9647 + 1.1630m = 3.13 m		1–3
Total for one gable	= 2 x (1.9647 + 1.1630 + 0.1) = = 6.455 m		1
Total for all three gab	les = 19.37 m (20 m)		1
		Total	5

- (d) When the greenhouse is no longer required state how the following materials can be disposed of and what happens to them if they are recycled.
 - (i) Glass (2 marks)

Description	Marks
disposed of in general waste at a general rubbish tip	1
separated from waste then crushed, melted down and remoulded into bottles or jars	1
Total	2
Accept other relevant answers	

(ii) Concrete pad

(2 marks)

Marks
1
1
2
-

Section Two: Specialised field—Mechanical

Part A: Multiple-choice

Part B: Extended answer

Question 25

(a) How far from the top of the vertical support is the stainless steel cable AD attached? (2 marks)

Description	Marks
$BD^{2} = AD^{2} - AB^{2}$ = 2.40 ² - 2.00 ² = 1.76	1
BD = 1.33 m	1
Total	2

(b) Calculate the second moment of area for this horizontal beam. (3 marks)

Description	Marks
$I_{xx} = bh^{3}/12$ = 0.03 x 0.07 ³ /12	1–2
= 8.575 x 10 ⁻⁷ (answer must be in m^4 or mm^4)	1
Total	3

(c) Calculate the maximum bending moment of the beam at B before the sign is attached. (Assume the section AB remains horizontal and there is no significant bending in the vertical support.) (4 marks)

	Description	Marks
FUDL	= (148 x 9.8/9) x 7	1
	= 1128 N	1
BM _{max}	= F _{UDL} L/2	1 0
	= 1128 x 7/2	1-2
	= 3948 Nm	1
	Total	4

15 16 17 18 С 19 С 20 d 21 b 22 а 23 d 24 d

8

d	
а	
b	

60% (110 Marks)

10% (10 Marks)

50% (100 Marks)

(22 marks)

(d) Calculate the maximum deflection of the beam at C before the sign is attached. (Assume the section AB remains horizontal and there is no significant bending in the vertical support.) (4 marks)

Description		Marks
$y_{B} = F_{UDL}L^{3}/8EI_{xx}$ = (161.2 x 7 ³)/(8 x 2 x 10 ¹¹ x 8.575 x 10 ⁻⁷)		1–3
= 0.0403 m		1
Тс	otal	4

(e) Calculate the maximum deflection of the beam at C when the sign is attached. (Assume the section AB remains horizontal and there is no significant bending in the vertical support.) If you were unable to obtain a value for part (d), use 0.0500 m. (4 marks)

Description	Marks
$y_{C} = y_{B} + FL^{3}/3EI_{xx}$ = 0.0403 + (60 x 9.8 x 5.5 ³)/(3 x 2 x 10 ¹¹ x 8.575 x 10 ⁻⁷)	1–2
= 0.0403 + 0.01941	1
= 0.0597 m (0.0694)	1
Total	4

(f) Calculate the tension in the cable AD assuming the beam AC is horizontal. (5 marks)

Description		Marks
Moments about B		
Sum acm = sum cm		
$T_{cable} \sin 33.6^{\circ} x 2 = 148 x 9.8 x 2.5 + 60 x 9.8 x 5.5$		1–3
T = (3626 + 3242)/1.107		1
= 6204 N		1
	Total	5

Question 26

MARKING KEY

(15 marks)

(a) Calculate the length of the ramp XP.

(2 marks)

Description	Marks
XP = 28/sin38°	1
= 45.48 m	1
Total	2

(b) Calculate the time it takes for the roller-coaster to travel from X to P? (2 marks)

Description	Marks
$t = s/v_{av}$ = 45.48/0.72	1
= 63.17 s	1
Total	2

A person in the car when stationary at point P dropped a 150 g chocolate bar. How long would it take to hit the ground, assuming that it fell from the person's hand when it was 28.5 m above the ground? (Ignore any resistance.)

Description	Marks
s =ut + $0.5at^2$	1
$28.5 = 0 + 0.5 \times 9.8t^2$	I
$t = \sqrt{\frac{28.5}{4.9}} = \sqrt{5.81}$	1
t = 2.41 s	1
Total	3

(d) Calculate the frictional force between the track and the car. (2 marks)

	Description	Marks
F _f	= 0.15mg = 0.15 x 1600 x 9.8	1
	= 2352 N	1
	Total	2

(e) Using this information calculate the force the motor must apply to the car to move it up this slope at a constant velocity. (4 marks)

Description	Marks
$F = mgsin38^{\circ} + F_{f}$	1
= 1600 x 9.8 x sin38 + 2352	1_2
= 9654 + 2352	1 2
= 12 006 N	1
Total	4

10

(f) Determine the power rating of the motor used to achieve this task, if it is 80% efficient. If you were unable to obtain a value for part (e), use 11 000 N.

(2 marks)

Description	Marks
$0.8P = Fv_{av}$	1
$P = 12006 \times 0.72/0.8$	4
= 10 805 W (9900 W)	I
Total	2

MARKING KEY

Question 27

(18 marks)

(a) Indicate the direction of the car's acceleration in each of the following regions by circling the correct answer either up or down. (2 marks)

Desc	cription	Marks
(i) down		1
(ii) down		1
	Total	2

(b) Explain the reasoning you used to choose your answer for (a)(ii) above. (2 marks)

Description		Marks
only acceleration on the car is due to a component of gravity		1
gravity is always vertically downwards		1
	Total	2

(c) Calculate the speed of the roller-coaster car at point Q, assuming there is no energy losses between P and Q and PQ is a straight line. (3 marks)

Description	Marks
$0.5 \text{mv}^2 = \text{mgh}$	1
$v = \sqrt{2gh}$	1
$=\sqrt{2 x 9.8 x 28}$	
$= 23.43 \text{ ms}^{-1}$	1
Total	3

(d) Calculate the amount of energy 'lost' by the roller-coaster car between P and Q if its actual speed at Q is 20.6 ms⁻¹. (2 marks)

Description	Marks
$E_{K} = 0.5mv^{2} - 0.5mu^{2}$ = 0.5 x 1600 x [(23.43) ² - (20.6) ²]	1
$= 99\ 684\ J = 9.97\ x\ 10^4\ J$	1
Total	2

- (e) With regard to this 'lost' energy:
 - (i) State the form of energy into which most of it is transformed. (1 mark)

Description	Marks
Heat	1
Total	1

(ii) State where this transformed energy immediately goes. (1 mark)

1
1

(f) Determine the proportion of the roller-coaster car's potential energy 'lost' by the time it reaches point Q? (4 marks)

Description	Marks
E _P at start = mgh	
= 1600 x 9.8 x 28	1
= 4.39 x 10 ⁵ J	
0.5mv ² = 0.5 x 1600 x 20.6 ²	1
$= 3.39 \times 10^5$	I I
Proportion lost = (4.39 – 3.39)/4.39	1
= 0.228 or 22.8%	1
Total	4

(g) If this same proportion of energy is 'lost' as kinetic energy between Q and R, determine the maximum height of R above Q. If you were unable to obtain a value for part (f) use 25%. (3 marks)

Description	Marks
Energy at R = (1 - 0.228) x energy at Q	1
= 0.772 x 3.39 x 10 ⁵	1
= 2.62 x 10 ⁵ J (2.54 x 10 ⁵ J)	
At R mgh = 2.62×10^5	
h = $2.62 \times 10^{5}/(1600 \times 9.8)$	1
= 16.69 m (16.21 m)	I
Total	3

MARKING KEY

Question 28

(17 marks)

(a) Name the structural part of this crane that will be under compression. (1 mark)

Description	Marks
Jib	1
Total	1

(b) Determine the minimum radius of each of the steel lifting cables needed to lift a container filled with its maximum weight just before each cable undergoes plastic deformation. (6 marks)

Description	Marks
Force per cable = $(27\ 300\ x\ 9.8)/2$	1
= 133 770 N	1
Yield stress = 250 x 10 ⁶ Nm ⁻² (from data book)	1
Stress = F/A	I
A = F/stress	
= 133 770/(250 x 10 ⁶)	1
= 5.35 x 10 ⁻⁴ m ² per cable	
$A = \pi R^2$	1
$r^2 = 5.35 \times 10^{-4}/\pi$	I
r = 0.01305 m	1
Total	6

Using 540 mm² as the cross sectional area for each lifting cable, determine the mass of the load that would need to be attached to cause these cables to break if an attempt was made to lift the container.
 (4 marks)

Description	Marks
UTS = 470 x 10 ⁶ Nm ⁻² (from data book)	1
UTS = F/A	1
F = UTS x A	1
= 470 x 10 ⁶ x 540 x 10 ⁻⁶ x 2	1
= 507 600 N	1
Mass = F/g	
= 507 600/9.8	1
= 51 797 kg = 51 800 kg	
Total	4

(d) State **two** situations that could arise in lifting a load requiring a factor of safety to be applied to the steel lifting cables. (2 marks)

Description	Marks
cross winds when lifting	1
any sudden movement of the load	1
Total	2
Accept other relevant answers	

(e) Calculate the increase in length of each steel lifting cable under this load at the point the container just started to rise from the wharf. (4 marks)

Description	Marks
$E = FL/A\Delta L$	1
$\Delta L = FL/EA$	l I
= $(88\ 000\ x\ 40)/(2\ x\ 10^{11}\ x\ \pi\ x\ (4.15\ x\ 10^{-2})^2$	1–2
= 3.25 mm (0.00325m)	1
Total	4

MARKING KEY

Question 29

(12 marks)

(a) Calculate the downward force on the tow ball of the car when the trailer with boat and motor are attached to the car. The tow ball is the contact point between the boat trailer and the car. (4 marks)

Description	Marks
Σ acm = Σ cm	1
$rF_{motor} + rF_{hitch} = rF_{boat+trailer}$	1
(1.2 x 112 x 9.8)+(2.5 x F) = 0.50 x 540 x 9.8	1–2
F _{hitch} = 1328.88/2.5	1
= 531.5 N	
Total	4

(b) The power output of boat motors is almost exclusively measured using the unit of Horsepower (Hp). Given the power of this motor is 60 Hp, convert this into kilowatts given 1 Hp = 746 W. (1 mark)

Description	Marks
Power = 60 x 746/1000	1
= 44.76 kW	
Total	1

(c) Calculate the tension in the cable when it is parallel to the ramp. You are required to give the correct units in your answer. (4 marks)

Description	Marks
Total mass = 400 + 112 = 512 kg	1
F = mg Sinθ = 512 x 9.8 x Sin 20	1–2
= 1716 N (unit must be correct for this mark)	1
Total	4

(d) Suggest a suitable material for construction of the trailer. Give **two** reasons why this material was chosen. (3 marks)

Description	Marks
suitable materials either aluminium or galvanised iron	1
Any two of: • good corrosion resistance • strong • easy to work with	1–2
Total	3
Accept other relevant answers	

ENGINEERING STUDIES

Question 30

(16 marks)

(a) Calculate the upward force required by each motor to enable the drone to hover at a constant height. Assume the drone does not lose any power during the flight and there are no external wind factors. (3 marks)

	Description	Marks
F	= ma	1
	= 0.734 x 9.8 = 7.19 N	I
Fup	= F _{down}	
Fx4	= 7.19	1
	= 7.19/4	
Feach mot	_{or} = 1.80 N	1
	Total	3

(b) Using the maximum ascent, controlled descent and flight times, calculate the maximum height to which the drone can fly. Ignore any acceleration a deceleration effects.

(4 marks)

Description	Marks
$t = 27 \times 60$	1
= 1620 s	I
v = s/t	
t = s/v	1
1620 = s/5 + s/3	
1620 = (3s + 5s)/15	1
s = 3037 m	1
Total	4

(c) Calculate the total time that the drone would take to ascend to 100 m, fly to the maximum range, return and perform a controlled descent to the ground, all at maximum speed. (Assume maximum speed is reached immediately on liftoff.)

Description	Marks
Ascent	
t = s/v = 100/5	1
= 20 seconds	
Horizontal	
s = 13 000 x 2	1
= 26 000 m	I
Convert velocity to ms ⁻¹	
v = 65/3.6	1
= 18.05 ms ⁻¹	
t = s/v	
= 26 000/18.05	1
= 1440 s	
Descent	
t= s/v = 100/3 = 33.3 s	1
Total time = 20 + 1440 + 33.3 = 1493 s or 24.9 min	1
Total	6

Question 30 (continued)

(d) The drone's camera is pointed vertically downward and takes square photographs. Calculate the surface area of land that it could photograph at a height of 100 m, given that a field of view of 78.8° means the angle of view to the vertical is 39.4°. (3 marks)

Description	Marks
Length of base = $100\tan\theta x 2 = 164.3 \text{ m}$	1–2
Area = 164.3 ² = 26 994 m ²	1
Total	3

Question 41

Section Two: Specialised field—Mechatronics

Part A: Multiple-choice

31 32 33 34 35

36

37

38

39

40

Part B: Extended answer

(13 marks)

50% (100 Marks)

(a) Calculate the voltage and the current capacity of this battery pack at the outputs AB. (2 marks)

Description	Marks
4.5 V + 4.5 V = 9 V	1
2 A	1
Total	2

(b) Determine the voltage and current capacity this cell would need to have so that this battery pack could supply 6 A at 4.5 V to the load. (2 marks)

Description	Marks
4.5 V	1
6A - 2A - 3A = 1A	1
Total	2

(c) Calculate the minimum Ah that the third cell connected between A and B must have to achieve this. (4 marks)

Description	Marks
Load	
1.2 A x 100 h	1
=120 Ah	I
Duty Cycle	
120 Ah * 0.8	1
=96 Ah	Ι
Existing cells	
50 Ah + 30 Ah	1
=80 Ah	I
Required cells	
= 96 Ah – 80 Ah	1
= 16 Ah minimum	I
Total	4

Id—Machatronics

b

b

а

С

d

С

а

а

С

d

10% (10 Marks)

60% (110 Marks)

Question 41 (continued)

(d)	Calculate the total capacitance across AB in the circuit below.	(3 marks)
-----	---	-----------

Description	Marks
4700 nF = 4.7μF	1
$Cs = 1/(\frac{1}{4} + \frac{1}{4.7})$	1
= 2.16 μF	-
C _{a, b} = 2.16 μF + 5 μF	1
= 7.16 μF	I
Total	3

Calculate the value of the capacitor required to bring the total capacitance between A and B in the circuit above to 10 μ F and correctly draw it into the circuit in part (d). (2 marks) (e)

Description	Marks
= 10–7 µF	1
= 2.84 µF (in parallel)	1
drawing correct	1
Total	2
$ \begin{array}{c c} & & & & & & 4 \\ & & & & & 4 \\ & & & & & 4 \\ & & & & & 4 \\ & & & & & & 4 \\ & & & & & 5 \\ & & & & & 5 \\ & & & & & & 4 \\ & & & & & & 4 \\ & & & & & & & 4 \\ & & & & & & & & 4 \\ & & & & & & & & & & \\ & & & & & & &$	

MARKING KEY

(a) Complete the table below identifying the components in the circuit. (6)

(6 marks)

(15 marks)

	Description	Marks
Diagram label	Component	
Vcc	DC voltage source/9 V battery	1
T1	NPN transistor	1
C1	(polarised) capacitor	1
L1	LED	1
R1	Resistor	1
S1	Switch	1
	Total	6

(b) Determine the initial value of the current i0 with switch S1 open. (1 mark)

Description	Marks
i0 = 0	1
Total	1

(c) Explain what happens to the current i1 and i2 over time when the switch S1 is closed. (2 marks)

Description	Marks
initially i1 is large and i2 is small as C1 charges	1
as C1 approaches full charge i2 approaches i0	1
Total	2
Accept other relevant answers	

(d) Explain what happens to the mode of T1 when the switch S1 is closed? (2 marks)

Description	Marks
starts in cut off	1
goes to forward active	1
Total	2
Accept other relevant answers	

(e) If C1 was reduced, what effect would this have on L1? State the reason for your answer. (2 marks)

Description	Marks
L1 would reach full brightness faster	1
because the capacitor C1 would reach full charge faster	1
Total	2
Accept other relevant answers	

(f) With reference to voltages V_E, V_B and V_C, how can we determine that T1 cannot go into saturation mode? (2 marks)

Description	Marks
for saturation $V_B > V_C$ in NPN transistor	1
V_{B} cannot be greater than V_{C} due to the voltage drop across R1 of Vcc	1
Total	2
Accept other relevant answers	

Question 42

21

Question 43

(19 marks)

(a) Explain how you would measure the current flowing from the voltage source into the 1k2 Ω resistor. (3 marks)

Description	Marks
use an ammeter or multi-meter set to measure current	1
break the circuit and insert the meter in series	1
at points M and B (L & K are also acceptable)	1
Total	3
Note: if uses calculation of current only then award a maximum of 2 marks	

(b) Calculate the **maximum** possible total resistance of the circuit. (7 marks)

Description	Marks
R _{BC, MAX} = 1200 Ω + 0.1 x 1200 Ω = 1320 Ω	1.2
$R_{FH, MAX} = 2200 \Omega + 0.1 \times 2200 \Omega = 2420 \Omega$	1-2
$R_{EG, MAX}$ = 800 Ω + 0.05 x 800 Ω = 840 Ω	1.2
$R_{GJ, MAX} = 3300 \Omega + 0.05 \times 3300 \Omega = 3465 \Omega$	1-2
$R_{EJ, MAX} = R_{EG, MAX} + R_{GJ, MAX}$	
= 840 Ω + 3465 Ω	1
= 4305 Ω	
$R_{DK, MAX} = 1/((1/R_{FH, MAX}) + (1/R_{EJ, MAX}))$	
$= 1/((1/2420 \Omega) + (1/4305 \Omega))$	1
= 1549 Ω	
$R_{T, MAX} = R_{BC, MAX} + R_{DK, MAX}$	
= 1320 Ω + 1549 Ω	1
= 2869 Ω (to the nearest Ohm)	
Total	7
Not all working is required.	

(c) Calculate the **minimum** possible total resistance of the circuit. (7 mark)

Description	Marks
R _{BC, MIN} = 1200 Ω - 0.1 x 1200 Ω = 1080 Ω	1_2
R _{FH, MIN} = 2200 Ω - 0.1 x 2200 Ω = 1980 Ω	1-2
$R_{EG, MIN}$ = 800 Ω - 0.05 x 800 Ω = 760 Ω	1.2
R _{GJ, MIN} = 3300 Ω - 0.05 x 3300 Ω = 3135 Ω	1-2
R _{EJ, MIN} = R _{EG, MIN} + R _{GJ, MIN}	
= 760 Ω + 3135 Ω	1
= 3895 Ω	
$R_{DK, MIN} = 1/((1/R_{FH, MIN}) + (1/R_{EJ, MIN}))$	
$= 1/((1/1980 \Omega) + (1/3895 \Omega))$	1
= 1313 Ω	
$R_{T, MIN} = R_{BC, MIN} + R_{DK, MIN}$	
= 1080 Ω + 1313 Ω	1
= 2393 Ω (to the nearest Ohm)	
Total	7
Not all working is required.	

(d) Calculate the **maximum** possible current flowing at i1. If you were unable to obtain an answer for part (c), use $R_{T MIN} = 2600 \Omega$. (1 mark)

Description		Marks
Maximum current		
$i1_{MAX} = V_{CC}/R_{T, MIN}$		1
i1 _{MAX} = 12 V/2393 Ω		I
i1 _{MAX} = 5.0 mA (4.6 mA)		
	Total	1

(e) Calculate the **maximum** possible power dissipated by the 1k2 Ω resistor. If you were unable to obtain an answer for part (d), use i1_{MAX} = 4.6 mA. (1 mark)

Description	Marks
Maximum power	
$P_{BC, MAX} = (i1_{MAX}^2)R_{BC, min}$	1
$P_{BC, MAX} = (0.0050)^2 \times 1080$	1
$P_{BC, MAX} = 27 \text{ mW} (22.8 \text{ mW})$	
Total	1

Question 44

(12 marks)

(a) Name **one** advantage and **one** disadvantage of an open loop control system. (2 marks)

Description	Marks
Advantages	
Any of the following:	
simple/economical	1
easy to maintain	1
stable	
Disadvantages	
Any of the following:	
 inaccurate/output is not monitored 	1
unreliable	1
cannot remove external disturbances	
Total	2
Accept other relevant answers	

(b) Name **one** advantage and **one** disadvantage of a closed loop control system. (2 marks)

Description	Marks
Advantages	
Any of the following:	
accurate	1
can remove external disturbances	
Disadvantages	
Any of the following:	
stability issues	1
complex/uneconomical	1
tuning/maintenance costs	
Total	2
Accept other relevant answers	

(c) Complete the table below by identifying what should be at each of the labelled locations of the control system above. (8 marks)

	Description	Marks
А	desired speed (input)/set point	1
В	error	1
С	motor command	1
D	DC motor/plant	1
E	disturbances/power supply for motor	1
F	actual speed (output)	1
G	encoder/tachometer/feedback sensor	1
Н	measured signal	1
	Total	8
Accept	other relevant answers	

Question 45

(27 marks)

(a) The control system below will use a N/O switch S1 as an input that will later be programmed to turn on a motor. It will also have a N/C switch S2 connected as an input that will be programmed to be used for directional control of the motor. Draw the wiring diagram for this below. The input pins have internal pull up resistors that can be assumed to have been programmed to be on. (4 marks)

Description	Marks
switch 1 symbol correct and marked S1	1
switch 2 symbol correct and marked S2	1
S1 and S2 connected to input pins on one side	1
S1 and S2 connected to ground on other side (either GND)	1
Total	4

Question 45 (continued)

(b) The control system below will use an output to turn on a LED L1 with a resistor R1 in series. This will later be programmed to turn on when the motor is running. Draw the wiring diagram for this below. (4 marks)

Description	Marks
LED symbol correct and marked L1	1
circuit connected to output pin on one side	1
resistor in series with LED	1
circuit ends at GND (either GND)	1
Total	4

(c) Use the diagram below to draw a voltage regulator circuit to take a 9 V battery and provide the microcontroller the 5 V supply it requires. (7 marks)

Description	Marks
9 V DC symbol used	1
9 V supply connected correctly	1
capacitor 1 inserted and correct value	1
capacitor 2 inserted and correct value	1
7805 used and marked correctly	1
7805 IC connected correctly	1
correct pins connected to on microcontroller	1
Total	7

Question 45 (continued)

(d) The controller will use an output for a DPDT relay Y1, which will be used as a H bridge that will drive a motor M1 from a separate 10 A 24 V DC source. It will also use a SPDT relay Y2 triggered by an output to turn the motor power off and on. Draw this configuration, using the diagram below. (12 marks)

Description	Marks
DPDT relay component used and marked as Y1	1
output pin used for Y1 coil	1
one side of Y1 coil connected to ground	1
motor marked as M1	1
motor Connected correctly	1
correct supply symbol used	1
supply marked 24 V 10 A	1
supply connected correctly to DPDT	1
SPDT relay used and marked as Y2	1
output pin used for Y2 coil	1
one side of Y2 coil connected to ground	1
Y2 switch breaks power to M1	1
Total	12
errors carried forward full marks (misidentified pins only)	

Question 46

(14 marks)

(a) When the motor is rotating at 300 rpm, how fast is the winch rotating? (1 mark)

Des	cription	Marks
v _w = 300/35		1
v _w = 8.57 rpm		1
	Total	1

(b) If the motor is rotating at 300 rpm, how fast is the weight rising? If you did not get an answer for part (a), use 9 rpm. (3 marks)

Description	
$v_1 = v_w x 2 x \pi x r/60$	1
derive equation	I
Use $v_w = 8.57$ rpm from a	1
r = d/2 = 0.1 m	I
$v_1 = 5.38$ m/min or	4
= 0.0897 ms ⁻¹ (0.0942 ms ⁻¹)	1
Total	3
Accept other methods of deriving correct answer	

(c) At what rate does the motor need to spin for the weight to rise at 0.10 m s⁻¹? (3 marks)

Description	
v _L = 0.1 m/s	
r = 0.1 m	
$v_{L} = v_{w} x 2 x \pi x r/60$	1 2
v _w = 9.55 rpm	1-2
$v_m = v_w \times 35$	1
v _m = 334 rpm	
Total	3
Accept other methods of deriving correct answer	

(d) For what period of time does the motor need to spin at 300 rpm for the weight to have risen 1.20 m? If you did not get an answer for part (b), use 95 mm s⁻¹. (3 marks)

Description	Marks
1.20/0.0897	1–2
t = 13.4 s (12.6 s)	1
Total	3

(e) If the velocity ratio is 1.01 and the distance moved by the load is 1.30 m, calculate the distance moved by the effort. (1 mark)

Description	Marks
$d_e = 1.01 \text{ x } 1.3 \text{ m}$ $d_e = 1.31 \text{ m}$	1
Total	1

29

Question 46 (continued)

(f) If the effective diameter of the output shaft of the gearbox is 20 mm does the winch or the gearbox have greater mechanical advantage in this system and why? (3 marks)

Description	
gearbox	1
winch advantage is 20:200 or 1:10	1
gearbox advantage is 35:1	1
Total	3

ACKNOWLEDGEMENTS

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence.

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107