

COMPUTER SCIENCE ATAR course examination 2016 Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

2

Section One: Short answer 40% (73 Marks)

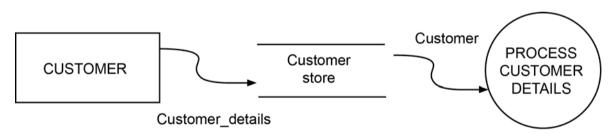
Question 1 (3 marks)

(a) At which stage of the system development life cycle does the changeover to a new system take place? (1 mark)

Description	Marks
Implementation	1
Total	1

(b) What characterises a phased implementation approach?

(1 mark)

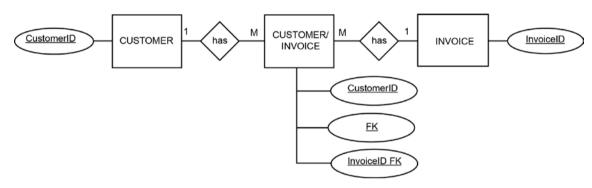

Description	
Phased means that only one part of the system is implemented at a time	1
Total	1

(c) Give **one** reason why a phased implementation would be the **best** approach to follow in this case. (1 mark)

Description	Marks
This approach causes minimum disruption	1
Total	1
Accept any appropriate alternative answers.	

Question 2 (2 marks)

In the Level 0 data flow diagram below list **two** errors that are a result of **not** following the rules for drawing DFDs.


Description		Marks
Customer details data flow going from entity to Data Store		1
The data flow (Customer) from the Customer data store to process		1
	Total	2
Accept also:		
No numbering in process		
Process is a black hole		

Question 3 (8 marks)

(a) To create a model that can be implemented in a relational database the above many to many (M:N) relationship needs to be resolved. Describe the resolution process, referring to the unresolved entity relationship diagram above. (2 marks)

Description	Marks
Create an associative (or joining or linking) entity between the Customer	1
entity and the Invoices entity	Į
Break the many to many relationship into two.	
Accept: create a one to many and many to one relationship	1
Accept: insert foreign key in associative entity	
Total	2

(b) Redraw the diagram to show the resolved relationship. Include the following: (6 marks)

Description	Marks
Provides an appropriate entity name	1
Answers could include:	
Customer-Invoice (accept joining/linking/associative entity as name)	
Bill	
Request for payment	
Provides an appropriate relationship verb	1
Answers could include:	
Has	
Is-issued-to	
• issues	
Provides an appropriate cardinality	11
Answers could include:	
1:M for Customer: Customers-Invoice and M:1 for Customer-Invoice:	
Invoice	
Provides necessary primary and foreign keys	13
Answers could include:	
CustomerID_FK	
InvoiceID_FK	_
Both FKs underlined	
Accept new unique primary key in place of underlined FKs	
Total	6
Accept relevant answers throughout.	

Question 4 (4 marks)

The Department of Defense (DoD) transmission control protocol/internet protocol (TCP/IP) model is based on four layers: application layer, transport layer, internet layer and network layer. State the purpose of each layer.

Description		Marks
Application layer: Defines the protocols for node-to-node application		1
communication		ı
Transport layer: Sets up level of transmission		1
Internet layer: handles packaging, addressing and routing of data		1
Network layer: supervises data transmission between the host and network		1
	Total	4
For network layer answers could include:		
manages hardware addresses or MAC addresses		
defines protocol for physical media for transmission of data		
Accept any other reasonable answer		

Question 5 (1 mark)

Give one reason why the table below is unnormalised.

PatientID	Name	Date-Of-Birth	Height (cm)	Weight (kg)	Blood type
21AXC	Adam Lee	21/06/2000	170	60	Α
53AGS	Kim Jones	25/09/2001	165	62	APos
21AXC	Adam Lee	21/06/2000	170	55	А

Description		Marks
The table contains a repeating group (duplicated data)		1
	Total	1
Also accept:		
Non-atomic value in the attribute weight (kg)		
Non-atomic name		

Question 6 (2 marks)

Give two differences between executable code and byte code.

Description	
Gives two differences, 1 mark each	1–2
Total	2

Examples include:

- Executable code is faster than byte code
- Byte code is more portable than executable code

Accept any other relevant answers.

Question 7 (6 marks)

The following pseudocode calculates and outputs an average mark for a group of five students.

(a) Identify the logic error in the above pseudocode and explain why it is an error. (2 marks)

Description		Marks
The two FOR loops have different start indices		
Also Accept: The loop index in the first loop should be zero; or		1–2
The loop index in the second loop should be one.		
	Total	2

(b) Assume the five values 20, 20, 20, 20 and 20 respectively are input. If the error is not corrected, will the final value of Total be 100? Explain why or why not. (2 marks)

Description		Marks
No.		1
Explanation: Mark[0] is uninitialised and is used to calculate Total		1
Total		2
A coest also:	J	

Accept also:

- Yes
- Explanation: Mark could be a global variable that is already initialised Accept any other relevant answers.
- (c) What type of parameter is Num?

(1 mark)

Description	Marks
A value parameter	1
Total	1

(d) What type of variable is Avg?

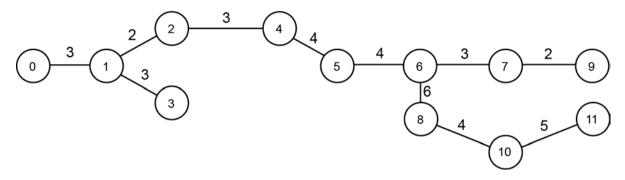
(1 mark)

Description	Marks
A local variable	1
Total	1

Question 8 (2 marks)

List **two** primary functions of a domain name server.

Description	Marks
Two functions, 1 mark each.	1–2
Total	2


Examples could include:

- · To map IP addresses to names and criteria
- To map directory services
- · Maintain directory of domain names
- To map URL (web address) to IP address

Accept any other relevant answers.

Question 9 (6 marks)

The Gantt chart shown below is for a web-based information systems project. Analyse the Gantt chart and draw a PERT chart using the data provided.

Description	Marks
Order of tasks 0 to 5	1
Order of tasks 6 to 11	1
Branching 1 – 2 – 3	1
Branching 6 -7 – 8	1
Duration 0 – 5	1
Duration 5 – 11	1
Total	6
Note: A chart that begins with any value other than zero can score a maximum of 5	marks

Question 10 (4 marks)

When developing a network security policy, it is important to understand the threats that can be made against a network. 'IP spoofing' and 'back doors' are two techniques that can compromise the security of a network. Describe each of these techniques.

Description	Marks
IP spoofing:	
A technique used to gain unauthorised access to a computer	1
whereby an intruder sends messages to that computer from a false IP address	1
Back door:	
An undocumented method of gaining access	1
to a program, online service or an entire computer system	1
Total	4
Also accept: IP spoofing is about concealing the identity of the sender or	
impersonating another computer system	

Question 11 (3 marks)

You are given a list of fifty real numbers that represent sample values of carbon monoxide levels taken from a freeway sensor. Assuming that you will need to perform the same calculation on all members of the list, what data type or structure would be best to hold the list? Explain.

Description	Marks
Array or list	1
Provides explanation	1–2
Total	3
Example explanation: The data being collected is a simple type (1 mark) and memblist can be accessed easily (1 mark)	ers of the

Question 12 (9 marks)

(a) Provide a specific example of how each of the following anomalies could or do occur, using the information from the table above.

(i) Insert anomaly

(1 mark)

Description	Marks
Provides an appropriate user anomaly example	1
Total	1
Evernale enginer:	

Example answer:

If a new student has been enrolled but has not yet been assigned classes, SubjectCode, Teacher and Room will not have any data Accept any other relevant answers.

(ii) Delete anomaly

(1 mark)

Description	Marks
Provides an appropriate delete anomaly example.	1
Total	1
Example answer: If teacher Smith retired, data would be lost about one student, Julie.	

(iii) Update anomaly

(1 mark)

Description	Marks
Provides an appropriate update anomaly example	1
Total	1

Example answer:

Accept any other relevant answers.

If Hughes leaves and is being replaced by another teacher, multiple records will need to be changed. This could lead to not all data being updated. Accept any other relevant answers.

(b) Normalise the data from the table on page 12 to 3NF. Identify primary keys and foreign keys. (6 marks)

The Student entity has been completed for you Student (StudentID, StudentFirstname, StudentLastname, Year)

Description	Marks
Student-Subject (enrolment) entity	1
SubjectCode primary key of Subject entity	1
StudentID_FK	1
SubjectCode_FK	1
Subject entity (1 mark) StudentID_FK and SubjectCode_FK compound primary key (underlined) for Student-Subject entity (1 mark) Or Provides a Link entity that joins Student, Subject, Teacher and Room (1 mark) and contains its own primary key (1 mark)	1–2
Total	6
Answers could include:	
Student-Subject (StudentID_FK, SubjectCode_FK)	
Subject (SubjectCode, Teacher, Room)	

Question 13 (3 marks)

Name **one** network protocol for dealing with collisions during transmission in ethernet networks. Describe how this protocol works over ethernet. Expand all acronyms.

Description	Marks
Name a protocol	1
Describes how it works	1–2
Total	3

Example description:

Name: carrier sense multiple access/collision detection.

When two stations attempt to transmit simultaneously a collision occurs and is detected by all participating stations.

After a random time interval, the stations that collided attempt to transmit again.

Question 14 (5 marks)

(a) Define an end user license agreement (EULA). (2 marks)

Description	Marks
Defines EULA	1–2
Total	2
Every le definition. An and year license agreement (FLILA) describes a ser	44

Example definition: An end user license agreement (EULA) describes a **contract** (agreement) between a software developer and a user of that software. Accept other reasonable alternatives.

(b) List **three** other types of software license.

(3 marks)

Description		Marks
Lists three licenses, 1 mark each		1–3
	Total	3
Examples include:		
Network		
Commercial		
Enterprise		

Question 15 (4 marks)

(a) Define 'server virtualisation'.

Proprietary

(2 marks)

Description		Marks
Defines server virtualisation.		1–2
	Total	2
		_

Example definition: Where one or more servers are implemented (1 mark) on the same hardware server (1 mark).

Also accept: Where a software application divides one physical server (1 mark) into multiple isolated virtual environments (1 mark)

(b) What are **two** benefits of server virtualisation over traditional hardware servers?

(2 marks)

Description	Marks
Gives two benefits	1–2
Total	2
Benefits include:	
Cost saving	
Saves space	

Question 16 (1 mark)

Wireless broadband is often suggested as a viable internet solution for those people who live too far from an exchange to have ADSL as an option. A farmer living 200 km from the city finds that such a wireless plan is not available at his location. Name **one** item of hardware infrastructure that is required in the region in order to provide broadband internet connectivity to his home.

Description	Marks
Provides an appropriate hardware infrastructure solution	1
Total	1
Example: Satellite	

Question 17 (1 mark)

What is the purpose of levelling a data flow diagram?

Description		Marks
Gives the purpose		1
	Total	1
Examples include:		
 A process is required to be broken down to provide more detail. 		
Complexity makes the diagram hard to understand or interpret		

Question 18 (1 mark)

What element of a DFD maps directly to an entity relationship (ER) diagram?

Description	Marks
Gives the element	1
Total	1
Examples include:	
The data entity	
data source or data sink	

Question 19 (1 mark)

State one ethical responsibility of software users.

Description	Marks
States ethical responsibility	1
Total	1
Example: Users need to ensure that their software is licensed	

Question 20 (1 mark)

State one role of an operating system.

a file system

Description	Marks
States a role	1
Total	1
Examples include managing:	
scheduling	
• concurrency	
memory	
• devices	ļ

Question 21 (6 marks)

(a) Describe what is meant by 'RAID 10'.

(2 marks)

Description	Marks
Describes RAID 10	1–2
Total	2
Example description: RAID 10 is a combination (1 mark) of RAID 0 (zero)	
and RAID 1 (one) (1 mark)	
Accept: Mirroring for RAID 0	
Accept: Striping for RAID 1	

(b) How many hard disks are required to implement RAID 10? _____ (1 mark)

Description	Marks
4 (four)	1
Total	1

(c) Which files are backed up in an incremental backup scheme?

(1 mark)

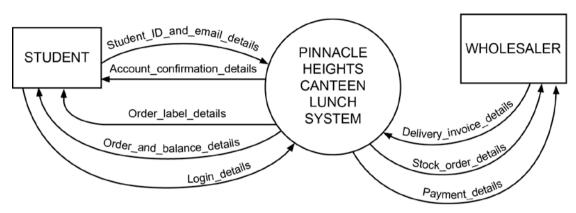
Description	Marks
Any new or changed files since the last backup	1
Total	
Accept any other relevant answers.	

(d) List **two** types of disaster recovery tools.

(2 marks)

Description	Marks
Lists two disaster recovery tools, 1 mark each	1–2
Total	2

Examples include:

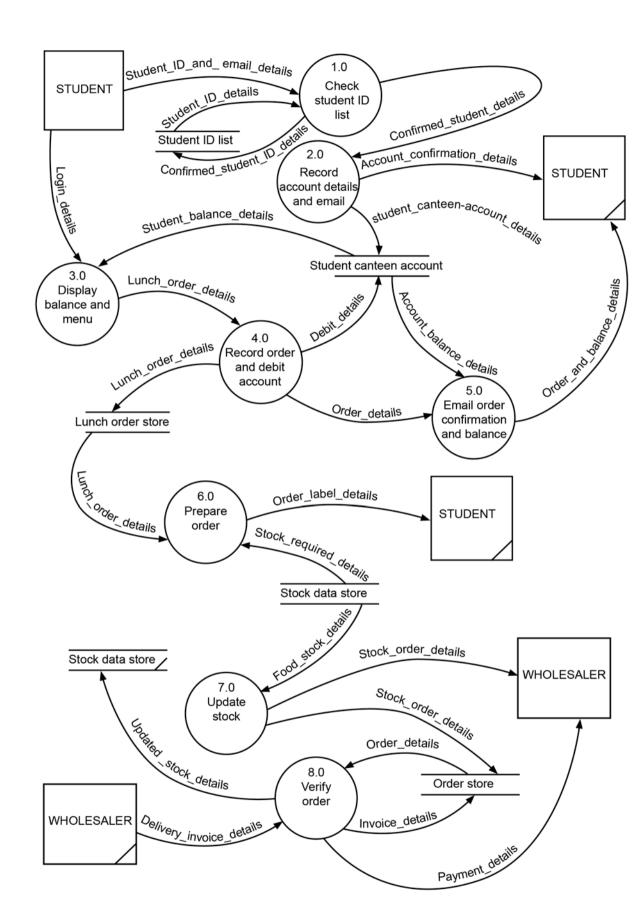

- online storage
- incremental backup
- full backup
- RAID (level 0, 1, 10)
- uninterruptible power supply (UPS)

End of Section One

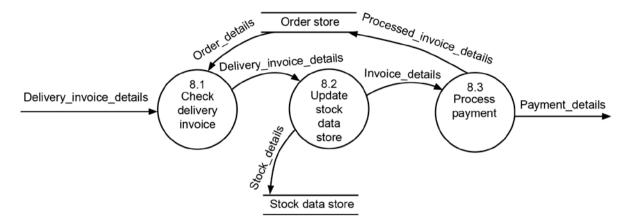
Section Two: Extended answer 60% (105 Marks)

Question 22 (30 marks)

(a) Complete the context diagram below for the Pinnacle Heights Canteen Lunch System (PHCLS). (6 marks)



Description	Marks
Appropriate system name	
Adds another entity (e.g. Registrar)	1
Data flows drawn and labelled appropriately (noun/verb). One mark each	
up to a maximum of four marks	1–4
Total	6
Answers could include:	
System name:	
Pinnacle Heights Canteen System	
Canteen System	
PHCLS	
Data flows:	
Login details	
Account confirmation details	
Stock order details	
Payment details	
Order and balance details	
Student order details	
Accept any other relevant answers.	
Accept also 'info.' in place of 'details'	


(b) Complete a Level 0 data flow diagram for the PHCLS on page 18, showing all items correctly labelled. All entities, data stores and processes have been placed on the diagram for you. (16 marks)

Description		
Data stores named appropriately given problem context	1–2	
Processes named using appropriate verb/noun combinations	1–3	
Data flows drawn and named appropriately	1–11	
Total	16	
Solutions will vary. Answers could include:		
Data stores:		
Student Canteen Account		
Lunch Order Store		
Processes:		
Check Student ID List		
Record Account details and Email		
Display Balance and Menu		
Data flows:		
Login details		
Student ID details		
Confirmed Student details		
Student Canteen Account details		
Student Balance details		
Account Balance details		
Debit details		
Lunch Order details (occurs twice)		
Stock Required details		
Food Stock details		
Appropriate answers will reflect the information provided.		

tu

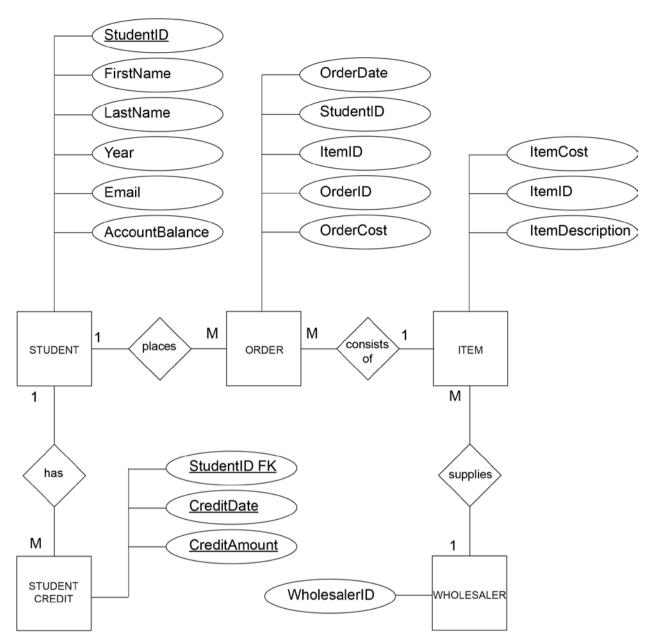
(c) Complete the Level 1 data flow diagram below, which results from expanding process 8.0 – Verify Order. (8 marks

Description	
Process names appropriate and different from level 0 process names	1–3
Data flows drawn and named appropriately	
Total	8
Accept any other relevant answers.	

Question 23 (30 marks)

(a) Complete the ER diagram on page 21, including the following:

(12 marks)


- the names of the **three** unnamed entities
- the cardinality
- the primary key(s) for all entities.

Description		Marks
At least three entities named appropriately given context		1–3
Represents correctly the cardinalities appropriate to the entities		1–3
Primary keys appropriate to entities		1–6
	Total	12
Example answer for 12 marks:		
Order		
Student Credit		
• Item		
1:M for Student:Order		
M:1 for Order: Item		
1:M for Student:Student Credit		
StudentID for Student entity		
OrderID/ItemID_FK for Order entity		
ItemID for Item entity		
StudentID/Credit date for Student Credit		
Accept any other relevant answers, e.g. for entity names.		

- (b) Each product is supplied by one wholesaler. Each wholesaler supplies many products. Complete the following on the ER diagram: (6 marks)
 - add a Wholesaler entity on the ER diagram, showing the relationship and cardinality
 - list the required primary or foreign key(s) for the Wholesaler entity
 - · indicate any foreign keys.

Marks
1
1
1
1
1
1
6

Accept any other relevant verb for relationship and any other relevant answers for entity names that match part (a).

(c) State the purpose of a data dictionary.

(1 mark)

Description		
Provides a shared understanding of the structure of a database		1
	Total	1
Accept any other relevant answers.	•	

(d) Complete the data dictionary below for the Student entity.

(5 marks)

Description	Marks
StudentID: String	1
FirstName: Required	1
Year: 2	1
Email: Email address containing @ sign	1
AccountBalance: Real	1
Total	5

Accept any other reasonable answers e.g.

Number for StudentID

Currency for AccountBalance

Float for AccountBalance

Element name	Data type	Size/ Format	Description	Constraint
StudentID		6	Unique identifier for each student	Required. Automatically created when record added
FirstName	String	25	First name of student	
LastName	String	25	Last of student	Required
Year	String		The year level	Required
Email	String	30		Required. An email confirmation is given for lunch order
AccountBalance		6	The student's cash balance	Required. Automatically retrieved and displayed when student logs in

(e) State the purpose of the field StudentID.

(1 mark)

Description		Marks
A unique identifier for each student		1
	Total	1
Answers could include:		
Primary key		
Accept any other relevant answers.		

- (f) Consider the ER diagram on page 21. For the CreditDate month of June, write a query using structured query language (SQL) that will list the following. (4 marks)
 - FirstName
 - LastName
 - AccountBalance
 - CreditAmount

Description	
SELECT [FirstName], [LastName], [AccountBalance], [CreditAmount]	1
FROM Student, StudentCredit	1–2
WHERE [CreditDate] = 'June'	
Total	4
Accept any other relevant answers.	

(g) State **one** method that the manager could use to ensure that the network is secure. (1 mark)

Description		Marks
States a method		1
	Total	1
Answers could include:		
Encrypt network traffic		
Use of Firewall(s)		
Anti-virus software		
Password protect the database		
Accept any other relevant answers.		

Question 24 (22 marks)

(a) Examine the function above and complete the trace table below to calculate the true/false result for the input parameters 20, 40, 10. (11 marks)

Description	Marks
One mark for each correct line in the table	1–11
Total	11

Line#	Redvalue	Ambervalue	Greenvalue	Total	Fraction	Result
1	0					
2		0				
3			0			
4				0		
5						False
6	60					
7		80				
8			10			
9				150		
10					0.4	
11						True

(b) Review of the pseudocode on page 24 has revealed a logic error that has no effect on the trace table. On what line is the error? Write the correct pseudocode. (2 marks)

Description	Marks
Line 11	1
If Fraction > 0.4 Then Result ← True	1
Total	2

- (c) Write an algorithm in pseudocode to do the following. Assume that there are three orders for the day. (9 marks)
 - · read the orders
 - total and output the cost of all orders for the day
 - calculate and output an average daily spend per student
 - test for zero-value orders and do not use them in the calculation of the average daily spend per student.

Description	Marks
Initialising a variable that stores the number of zero-value orders	1
Reading in the orders	1
Calculation correct of total cost	1
Test for zero-value orders (1) and ensure they don't affect the average (1)	1–2
Calculation of average	1
Catch potential division by zero if all orders are blank	1
Output total costs of orders	1
Output average daily spend per student	1
Total	9
Accept any other relevant answers, e.g.	
 Array answer counting from 0 (zero) to NumOrders-1 	

```
AverageCost(NumOrders)
Total ← 0
Average ←0
Order1 ←0
Order2 ←0
Order3 ←0
Blanks ←0
Read Order1
Read Order2
Read Order3
If Order1 = 0 Then
      Blanks ← Blanks + 1
endif
If Order2 = 0 Then
      Blanks ← Blanks + 1
endif
If Order3 = 0 Then
      Blanks ← Blanks + 1
endif
Total ← Order1 + Order2 + Order3
If (NumOrders <> Blanks) Then
  Average ← Total / (NumOrders – Blanks)
Else
      Average ← 0
endif
Output("Total spent today is ", Total)
Output("Average spend per student today is", Average)
```

Question 25 (23 marks)

(a) List **three** reasons why a wired solution using the school's computer laboratories might be preferable to a wireless solution. (3 marks)

Description	Marks
Lists three reasons, 1 mark each	1–3
Total	3

Examples include:

- · Wireless could be intercepted
- Wireless is affected by environmental conditions
- Wireless could be tampered with

Accept any other reasonable answer

(b) List **two** ways in which Wi-Fi is different from Bluetooth.

(2 marks)

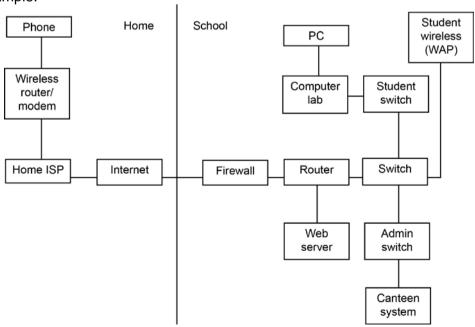
Description	Marks
Lists two ways, 1 mark each	1–2
Total	2
Examples include:	

- Wi-Fi has greater range than Bluetooth
- Wi-Fi has stronger encryption than Bluetooth

Accept any other reasonable answer

- (c) The school has chosen a combined wired and Wi-Fi network solution. A student will be able to order lunch using a:
 - mobile phone connected to a home Wi-Fi network
 - mobile phone connected to the school Wi-Fi network
 - computer connected to the school's wired network.

For security reasons, any student networks must be separated from other networks in the school.


Draw a labelled network diagram that shows the following:

- a home connection to the PHCLS
- a school Wi-Fi connection to the PHCLS
- a school wired connection to the PHCLS.

(18 marks)

Description	Marks
Provides a viable solution with sequencing of devices for the home connection Appropriate order of components For example: Phone, Home wireless point (home wireless router/modem, cable modem or equivalent), Internet, ISP (OK to include internals of ISP, but not required), Internet, School Firewall, Router, Switch, Canteen System	1–9
Provides a viable solution with sequencing of devices for the school Wi-Fi connection Appropriate order of components For example: Phone, WAP, Switch, Canteen System	1–4
Provides a viable solution with sequencing of devices for the school wired connection Appropriate order of components For example: Devices: Computer, Switch, Canteen System	1–3
Separation of staff/student networks	1
Appropriate use of CISCO conventions	1
Total	18
Accept any other reasonable answers.	

Example:

intranet, for no	t – apart from any third party copyright material contained in it – may be freely copied, or communicate n-commercial purposes in educational institutions, provided that it is not changed and that the School Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infring	Curriculum
Copying or cor permission of t	mmunication for any other purpose can be done only within the terms of the <i>Copyright Act 1968</i> or with School Curriculum and Standards Authority. Copying or communication of any third party copyrigh within the terms of the <i>Copyright Act 1968</i> or with permission of the copyright owners.	n prior written
Any content in Creative Comn	this document that has been derived from the Australian Curriculum may be used under the terms of mons Attribution-NonCommercial 3.0 Australia licence.	the
	Published by the School Curriculum and Standards Authority of Western Australia	

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107