MATHEMATICS APPLICATIONS

Calculator-assumed

ATAR course examination 2018

Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section Two: Calculator-assumed

Question 8

Anthony and Bryan each invest $\$ 4500$ in accounts earning compound interest for a period of four years.
(a) Anthony places his money in an account earning interest at the rate of 3.24\% per annum, compounded quarterly.
(i) Complete the table below, showing the value of Anthony's investment at the end of the second and third quarters.
(2 marks)

Solution						
Number of quarters money is invested	1	2	3	\ldots	16	
Value of investment (\$)	4536.45	4573.20	4610.24	\ldots	5120.00	
\checkmark completes one correct value \checkmark completes both correct values						

(ii) State the recursive rule for Anthony's investment, which gives the values shown in the table above.
(2 marks)

Solution
$T_{n+1}=T_{n} \times\left(1+\frac{0.0324}{4}\right), T_{0}=4500$
or
$T_{n+1}=T_{n} \times \frac{0.0324}{4}+T_{n}, T_{0}=4500$
Specific behaviours
states correct initial value \checkmark states correct multiplier

(b) Bryan places his money in an account earning interest daily. After four years, the value of both Anthony's and Bryan's investments is the same.

Explain how the change to the compounding period has affected the annual rate of interest required for the value of Bryan's investment to be the same as that of Anthony. Include calculations to support your answer.

Solution
$5120=4500\left(1+\frac{x}{36500}\right)^{(365 \times 4)}$
$x=3.227 \%$
$x \approx 3.23 \%$ p.a.
Therefore, increasing the compounding period to daily reduces the required interest
rate.
Specific behaviours
\checkmark shows correct calculation
\checkmark states the required interest rate
\checkmark states the correct effect on the interest rate

Question 9

Deborah is purchasing mealworms for her pet lizard, Lizzy, to eat.
Deborah starts by buying 50 mealworms. She then buys an additional 15 at the start of each subsequent week. She feeds 12 mealworms to Lizzy each week, and each week a certain percentage of the mealworms dies.

Deborah has found that the approximate number of mealworms at the start of the $n^{\text {th }}$ week can be modelled by M_{n}, where $M_{n+1}=0.9\left(M_{n}-12\right)+15, \quad M_{1}=50$.
(a) What percentage of the mealworms dies each week?

Solution	
10%	Specific behaviours
\checkmark states correct percentage	

(b) Determine the approximate number of mealworms Deborah has at the start of the fifth week.

(c) Deborah claims that she will never run out of mealworms using this model. Justify her claim.

Solve $\quad$$M=0.9(M-12)+15$ $M=42$
Deborah will always have 42 mealworms in the long run.
or
The sequence stabilises at 42.
Specific behaviours
\checkmark identifies a steady-state solution \checkmark states that Deborah will always have 42 mealworms

After 10 weeks, hot weather results in a larger percentage of the mealworms dying, so Deborah alters the model to:

$$
N_{n+1}=0.8\left(N_{n}-12\right)+15, N_{1}=c
$$

(d) (i) Determine the value of c.

$c=45$ Solution
\checkmark determines the correct value of c

(ii) Determine the approximate number of mealworms Deborah has at the start of the thirtieth week.
(1 mark)

Deborah's vet recommends feeding Lizzy 10 mealworms a week. She would also like to maintain a constant number of 30 mealworms at the start of each week, so she changes the above model to:

$$
P_{n+1}=0.8\left(P_{n}-10\right)+k
$$

(e) Determine the value of k, the number of mealworms she must buy each week, to ensure this occurs.
(2 marks)

Solution		
Solve$30=0.8(30-10)+k$ $k=14$		
\checkmark \checkmark uses steady-state solution		

Question 10

(a) Determine the values of \mathbf{A} and \mathbf{B} for the Victorian data.
(2 marks)

A $=27065-(11985+9575)=5505$
B $=100-(35.4+20.3)=44.3 \%$
Specific behaviours
\checkmark correctly calculates the value of \mathbf{A}
\checkmark correctly calculates the value of \mathbf{B}

(b) Compare the percentage of the total new vehicle sales in Western Australia with those in South Australia.
(3 marks)

WA: $\frac{8026}{98763} \times 100=8.1265 \% \quad$ Solution	
Western Australia has a higher percentage than South Australia. $\frac{6464}{98763} \times 100=6.54 \%$	
Specific behaviours	
\checkmark identifies the correct value for the numerators	
\checkmark calculates the correct percentages for both states	
\checkmark comments on the association between states	

(c) Describe the association between the number of sales of new passenger vehicles and new sports utility vehicles in Australia.
(1 mark)

Solution
The number of new passenger vehicles sold is always higher than the number of sports utility vehicles sold.
\checkmark Specific behaviours
describes the correct association

(d) Compare and comment on the percentage sales of vehicles in the Northern Territory with those in other States/Territories.
(2 marks)

Solution
The percentages of passenger vehicles and sports utility vehicles sold in the Northern Territory is the lowest in Australia. The percentage of other vehicles sold in the Northern Territory is the highest in the country. Specific behaviours \checkmark correctly compares passenger vehicle and sports utility vehicle sales to other states \checkmark correctly compares other vehicle sales to other states

Question 11

(a) Charles invests his money in an account earning interest at the rate of 3.35\% per annum, with interest calculated and added to his account at the end of each month. He also deposits an additional amount of money at the end of each month. Determine the monthly deposit required by Charles if he is to reach his goal by his 65th birthday.
(3 marks)

Solution		
	Compound Interest	
$1 \%=3.35$	N	60
$\mathrm{PV}=-465000$	1\%	3.35
	PV	-465000
$\mathrm{FV}=675000$	PMT	\$1921.801011
$\mathrm{P} / \mathrm{Y}=12$	FV	675000
$C / Y=12$	P/Y	12
	C/Y	12
Monthly deposit $=\$ 1921.80$ Specific behaviours		
\checkmark correctly uses 60 months \checkmark correctly uses P/Y and C/Y both 12 \checkmark correctly determines the required monthly deposit		

(b) (i) Determine the number of years that he will be able to receive this annuity.
(3 marks)

Solution		
$\begin{aligned} & N= \\ & \mathrm{N} \%=3.25 \\ & P V=-675000 \\ & P M T=65000 \\ & F V=0 \\ & P / Y=1 \\ & C / Y=12 \end{aligned}$	Compound Interest	
	N	12.92274676
		3.25
		-675000
		65000
		0
		1
	C/Y	12
$\mathrm{N}=12.92$		
Therefore, the fund will last 12 years.		
Specific behaviours		
\checkmark correctly uses payments of \$65000 and interest rate of 3.25\% \checkmark correctly uses P/Y equal to 1		
\checkmark correctly states N (rounded down to 12 years)		

Question 11 (continued)

(ii) Charles is hopeful that it will be possible for him to continue receiving an annuity until his 85th birthday. He decides to find an alternative fund offering a different interest rate, while continuing to withdraw $\$ 65000$ each year. What annual interest rate would he need to receive to make his money last until his 85th birthday?

Solution		
$N=20$	Compound Interest	
PV $=-675000$	N	20
PMT $=65000$	1\%	7.027477929
$\mathrm{FV}=0$	PV	-675000
$P / Y=1$	PMT	65000
$P / Y=12$	FVT	0
	P/Y	1
Interest rate = 7.03\%	C/Y	12
Specific behaviours		
\checkmark correctly uses $\mathrm{N}=20$ \checkmark correctly determines	st rate	

Question 12

(a) What is the purpose of calculating moving averages for time series data?

To smooth out time series data.
or
To identify the trend.
\checkmark correctly states a valid reason for calculating moving averages

(b) Determine the values \mathbf{A}, \mathbf{B} and \mathbf{C} in the above table.

$\frac{864+834+A}{3}=838, \therefore A=816$
$B=\frac{828+918+927+879+852}{5}=880.8$
$C=\frac{0.5 \times 840+927+936+894+867+828+0.5 \times 918}{6}=888.5$
\checkmark correctly determines A \checkmark correctly determines B \checkmark correctly determines C

(c) From those in the table above, which is the most appropriate moving average for the manager of the service centre to consider? Justify your choice.

Solution	
The most appropriate is the 5-point moving average.	
The data has a 5-point cycle.	
or	
The values in the 5-point moving average column are continually decreasing.	
Specific behaviours	
\checkmark correctly states the most appropriate moving average	

Question 13

The graph below shows the quarterly retail turnover per capita (\$) in Australia, i.e. the average amount spent per person at retail outlets during each quarter.

Quarterly retail turnover per capita, Australia, 2013-2017

The data for the next four quarters are shown in the following table.

Quarter	December $\mathbf{2 0 1 6}$	March $\mathbf{2 0 1 7}$	June $\mathbf{2 0 1 7}$	September $\mathbf{2 0 1 7}$
Quarterly retail turnover per capita (\$)	3521.40	2980.10	3045.00	3075.30

(a) Complete the time series plot by including this additional information.

Solution
See graph above. \quad Specific behaviours
\checkmark correctly plots at least two points
\checkmark correctly plots all points and joins them

(b) The equation of the least-squares line for the above data is $T=9.6143 Q+2986.50$, where $Q=1$ for December 2013, $Q=2$ for March 2014, etc.
(i) Fit this line to the graph.

See graph above. \quad Solution
Specific behaviours
shows correct value for $Q=1$ on the graph \checkmark shows correct slope

(ii) Describe the trend and seasonality of this data.

Solution
There is an increasing/upwards trend. The high points are in the December quarter and the low points are in the March quarter. Specific behaviours \checkmark correctly states the overall trend \checkmark correctly refers to high and low seasons

(c) The 4-point centred moving average for March 2017 is $\$ 3152.78$ (correct to two decimal places). Determine the actual retail turnover per capita for September 2016. (2 marks)

$3152.78=\frac{0.5 x+3521.40+2980.10+3045.00+0.5 \times 3075.30}{4}$
$x=3053.94$
Solution
correctly uses March 2017 as the central figure \checkmark determine the value for September 2016

(d) The seasonal indices (correct to two decimal places) are shown in the table below.

Quarter	Seasonal index
December	110.76%
March	95.00%
June	
September	98.20%

(i) Complete the table by determining the seasonal index for June.

Solution
June $=400-(110.76+95.00+98.20)$ $=96.04 \%$
\checkmark Specific behaviours

(ii) Use the seasonal index to determine the deseasonalised retail turnover per capita for December 2016.

Solution
$\frac{3521.40}{1.1076}=3179.31 \quad$ Specific behaviours
\checkmark uses the correct seasonal index, as a decimal
\checkmark divides 3521.40 by the seasonal index to give the deseasonalised value

Question 13 (continued)

(iii) The deseasonalised retail turnover per capita for March 2016 is $\$ 3142.42$. Determine the actual retail turnover per capita for this quarter.
(2 marks)

Solution

$\frac{x}{0.95}=3142.42$
$x=2985.30$
Specific behaviours
\checkmark uses the correct seasonal index, as a decimal
\checkmark determines the correct value for March 2016

Question 14

Marco is a plumber. Three years ago, he purchased a vehicle costing \$48 000 for his business. He paid a deposit of $\$ 5000$ and acquired a personal loan for the remainder from a financial institution, at a reducible interest rate of 22.5% per annum, compounded monthly. He agreed to make repayments of $\$ 1000$ at the end of each month.
(a) (i) Use a recurrence relation to determine the amount Marco currently owes on the loan.
(3 marks)

Solution
$\mathrm{T}_{\mathrm{n}+1}=\left(1+\frac{22.5}{1200}\right) \mathrm{T}_{\mathrm{n}}-1000$
$\mathrm{T}_{\mathrm{n}+1}=1.01875 \mathrm{~T}_{\mathrm{n}}-1000, \mathrm{~T}_{0}=43000$
$\mathrm{T}_{36}=33164.78$
He still owes \$33 164.78.
Specific behaviours
\checkmark correctly determines a recurrence relation
\checkmark correctly uses \$43000 as the initial value
\checkmark correctly determines amount still owing after three years

(ii) Determine how much longer it will take him to completely pay off the loan.
(2 marks)

$\mathrm{T}_{89}=-649.89$	
$89-36=53$	
It will take an extra 53 months to pay off the loan.	
Specific behaviours	
\checkmark correctly determines total number of payments required	
\checkmark correctly determines number of extra months	

(b) After three years, Marco finds that his vehicle is only worth \$27 150. Determine the average rate of depreciation of his vehicle, expressed as a percentage.

Solution	
$27150=48000 \times x^{3}$	
$x=0.827$	
$100-82.7=17.3 \%$	
Specific behaviours	
\checkmark correctly solves equation to determine the ratio (0.827)	
\checkmark correctly determines the rate of depreciation	

Question 14 (continued)

(c) When Marco originally took out a personal loan for the purchase of his vehicle, he was given two options by the financial institution. These were:

- increasing his monthly repayment by $\$ 200$, or
- taking an option of reducing the interest rate to 18.5% and maintaining repayments of $\$ 1000$ per month.

In terms of time taken to pay off the loan and total paid for his vehicle, which should he have chosen and why?

Solution	
Payment $=$ \$1200/mth	Payment $=\$ 1000 / \mathrm{mth}$
Interest = 22.5\%	Interest = 18.5\%
$n=59.99 \approx 60$ months	$n=71.08 \approx 72$ months
$\begin{aligned} \text { Total to repay } & =70800+(1200-14.24) \\ & =\$ 71985.76(+5000) \end{aligned}$	$\begin{aligned} \text { Total to repay } & =71000+(1000-921.44) \\ & =\$ 71078.56(+5000) \end{aligned}$
He should have chosen the reduced interest rate as he would have paid less for the car.	
or	
He should have chosen to increase his repayments as he would have paid off the loan sooner and it would have cost only an extra \$907.	
Specific behaviours	
\checkmark correctly determines time to repay first option	
\checkmark correctly determines time to repay second option	
\checkmark correctly determines total repayment for first option	
\checkmark correctly determines total repayment for second option	
\checkmark gives a valid reason for choosing an option	

Question 15

Ali is researching mobile phone carriers and has found several plans with monthly contracts. The table below shows the data allowance, GB (d) and the monthly cost \$ (C), of ten plans that he is considering.

Data allowance GB (d)	10	2.5	0.5	15	5	1	6	6	25	10
Monthly cost $\mathbf{\$ (C)}$	70	50	35	135	50	55	95	38	195	80

The graphs below show a scatterplot and a residual plot for the information in the table, with two points missing on both graphs.

(a) Plot the two missing points on the scatterplot.
(2 marks)

Solution	
See graph above.	Specific behaviours
\checkmark plots $(15,135)$ correctly	
\checkmark plots $(25,195)$ correctly	

(b) (i) Determine the equation of the least-squares line for the information in the table and state the correlation coefficient.
(2 marks)

Solution
$C=6.30 d+29.25$ and $r=0.932$
Specific behaviours
\checkmark correctly determines the least-squares line
\checkmark correctly determines the correlation coefficient

Question 15 (continued)

(ii) Describe the linear association between Data allowance and Monthly cost.
(2 marks)

Solution
Positive and strong as the correlation coefficient is strong
\quad Specific behaviours
\checkmark states the association is positive
\checkmark states the association is strong

(iii) Approximately how much does the cost change for every additional GB of data allowance?
(1 mark)

Changes by $\$ 6.30$ Solution
\checkmark states the correct change \quad Specific behaviours

(iv) What percentage of the variation in monthly cost can be explained by the variation in the data allowance?

Approximately $87 \% \quad$ Solution
\checkmark states correct percentage \quad Specific behaviours

(c) (i) Calculate the two missing residuals and include them on the residual plot.
(2 marks)

$(15,11.21),(25,8.19) \quad$ Solution
\quad calculates correct residuals
\checkmark correctly plots residuals on graph

(ii) What feature of the residual plot indicates that a linear model would be appropriate for the data?

Solution
Plots are random, i.e. no pattern evident.
\checkmark specific behaviours

(d) Predict the monthly cost of a plan with a data allowance of 20 GB .

	Solution
$\$ 155.30$	Specific behaviours
\checkmark states correct cost	

Question 16

Natalia inherits a sum of money from her grandfather. She wishes to place it in a high-interest savings account.

She is considering the following two options:
Account A: interest rate 4.40\% per annum, compounded monthly Account B: interest rate 4.30% per annum, compounded daily.
(a) The effective annual interest rate for Account A is 4.49% (correct to two decimal places). Determine the effective annual interest rate for Account B.

 $i=\left(1+\frac{0.043}{365}\right)^{365}-1=0.0439$ i.e. 4.39% \checkmark Solution

Natalia's bank offers her another account, C, with an interest rate of 4.50% per annum.
(b) Under what circumstances will this interest rate and the effective annual interest rate be the same?

If the interest is compounded annually.
Specific behaviours
\checkmark states correct reason

(c) Which account (A, B or C) should Natalia choose to maximise her savings? Explain your reasoning.

Solution
Account C as it has the highest effective interest rate.
\checkmark Specific behaviours
\checkmark correctly states Account C
\checkmark gives valid reason

Question 16 (continued)

Natalia's sister, Elena, has inherited \$25000 from her grandfather. She decides to invest this money in a high-interest savings account, with interest compounded monthly. Elena also chooses to deposit an additional $\$ 250$ into this account at the end of each month.

The table below shows Elena's account balance over the first three months.

Month	Account balance at start of month	Interest earned	Deposit	Account balance at end of month
1	$\$ 25000.00$	$\$ 125.00$	$\$ 250.00$	$\$ 25375.00$
2	$\$ 25375.00$	$\$ 126.88$	$\$ 250.00$	$\$ 25751.88$
3	$\$ 25751.88$	$\$ 128.76$	$\$ 250.00$	$\$ 26130.64$

(d) Show that the annual interest rate that applies to Elena's account is 6\%.

	Solution
$r=\frac{125}{25000} \times 12 \times 100=6 \%$	
\checkmark correctly shows the annual interest rate is 6\% 6	

(e) The amount in Elena's account, A_{n} at the end of month n, can be expressed as a recursive rule, $A_{n+1}=c A_{n}+d, A_{0}=25000$. Determine the values of c and d. (2 marks)

$c=1.005, d=250$
\checkmark correctly states the value of c
\checkmark correctly states the value of d

(f) After two years, Elena wishes to use the money she has saved as a deposit for a house. An amount of $\$ 35000$ will be required. Unfortunately, Elena has realised that by depositing $\$ 250$ each month she will not reach her savings goal.
(i) If she only deposits $\$ 250$ each month, by how much will she be short of the required deposit?
(2 marks)

| Solution |
| :--- | :--- |
| $A_{24}=34536.98$ |
| $35000-34536.98$ |
| $=463.02$ |
| After two years Elena has \$34 536.98, so she will need an extra \$463.02. |
| Specific behaviours |
| \checkmark correctly determines the amount saved after 2 years |
| \checkmark correctly calculates the extra amount needed |

(ii) What increase in the monthly deposit is required for Elena to save the \$35000 in two years?
(2 marks)

Solution			
Elena would have needed an extra $\$ 18.21$ per month	N $\mathrm{I} \%$ PV PMT FV P / Y C / Y	24 6 25000 268.2061020 -35000 12 12	
Specific behaviours			
\checkmark correctly determines the new deposit amount \checkmark correctly calculates the extra amount needed			

Question 17

Diagram 1 shows a network of pipes. The number on each edge gives the capacity of that pipe in L/min.

(a) State the capacities of the three cuts in Diagram 1.
(3 marks)

Cut 1 $1: 12+17+26=55 \mathrm{~L} / \mathrm{min}$
Cut $2: 12+24+26=62 \mathrm{~L} / \mathrm{min}$
Cut $3: 11+24+26=61 \mathrm{~L} / \mathrm{min}$
Specific behaviours
\checkmark correctly states the capacity of Cut 1
\checkmark correctly states the capacity of Cut 2
\checkmark correctly states the capacity of Cut 3

Diagram 2 shows a possible flow for the network of pipes.

(b) (i) Explain why the value of x is 30 .
(1 mark)

Solution
The flow into a node must equal the flow out of that node.
Specific behaviours
\checkmark states correct reason

(ii) Calculate the values of y and z.
(2 marks)

$18+x=15+11+z \therefore z=22$
$13+1+y=z \therefore y=8$
Solution
\checkmark correctly calculates the value of z
\checkmark correctly calculates the value of y

(c) State which of the pipes are at full capacity in Diagram 2.

DT, ET, BE and DC \quad Solution
\checkmark correctly gives at least 2 correct responses
\checkmark correctly gives all correct responses

(d) State the value of the flow for the network in Diagram 2.

Solution
$18+30=48$ or $15+22+11=48 \mathrm{~L} /$ min
\checkmark correctly states the flow \quad

Question 17 (continued)

(e) (i) The value of the flow for Diagram 2 can be increased by $2 \mathrm{~L} / \mathrm{min}$. List the series of pipes that could be used to achieve this.

Solution
SBCT by an increase of $2=50 \quad$ Specific behaviours
\checkmark correctly states the route

(ii) Show that the increased flow in part (e)(i) is a maximum for this network of pipes.

Solution

Minimum cut through DT, CT and ET $=50$ on Diagram 1
OR
DT, CT and ET are now at full capacity after the increase in flow from (e)(i)
Specific behaviours
\checkmark correctly shows the increased flow is a maximum for this network of pipes

ACKNOWLEDGEMENTS

Question $13 \quad$ Graph data source adapted from: Australian Bureau of Statistics. (2018). Table 19: Quarterly retail turnover per capita, Australia, all series. Retrieved April, 2018, from http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/8501.0Nov\%2 02017?
Used under Creative Commons Attribution 2.5 Australia licence.

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

