

CHEMISTRY ATAR COURSE

DATA BOOKLET

2018

Table of contents

Periodic table of the elements	3
Formulae	4
Units	4
Constants	4
Solubility rules for ionic solids in water	4
Colours of selected substances	5
α-amino acids	6 – 7
Standard reduction potentials at 25 °C	8

Copyright

© School Curriculum and Standards Authority, 2018

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons <u>Attribution 4.0 International (CC BY)</u> licence.

This document is valid for teaching and examining until 31 December 2018.

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107

ູທຸ
Έ
e
Č
ב
<u> </u>
Φ
Φ
ے
+
ب
0
<u>e</u> 0
Φ
<u> </u>
<u> </u>
<u> </u>
<u> </u>
c table
c table
riodic table
iodic table

18	2 helium 4.003	N	20.18	Ar	39.95	36	ヹ	krypton 83.80	54	Xe	xenon 131.3	86	Ru	radon	118	6 O	oganesson
17		9 —	19.00	Schlorine chlorine	35.45	35	Ŗ	79.90	53	_	iodine 126.9	85	At	astatine	117	<u>S</u>	tennessine
16		8 O xygen	16.00	Sulfur	32.07	34	Se	78.96	52	<u>e</u>	tellurium 127.6	84	Ро	polonium	116	_	livermorium
15		Z Nitrogen	14.01	P	30.97	33	As	arsenic 74.92	51	Sb	antimony 121.8	83	m	bismuth 209.0	115	S M	moscovium
41		ဖ ပ	12.01	Silicon	28.09	32	Ge	germanium 72.59	90	Sn	tin 118.7	82	Pb	lead 207.2	114	£ھ	flerovium
13		ۍ اونو	10.82	A8 aluminium	26.98	31	Ga	gallium 69.72	49	I	indium 114.8	81	3 E	thallium 204.4	113	Z	nihonium
12						30	Zn	zinc 65.38	48	ပ်	cadmium 112.4	08 -	6 H	mercury 200.6	112	S	copernicium
7						29	CC	copper 63.55	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg	roentgenium
10						28	Z	58.69	46	Pd	palladium 106.4	78	퐙	platinum 195.08	110	Ds	darmstadtium
o						27	ဝ	cobalt 58.93	45	R	rhodium 102.9	77	_	iridium 192.2	109	ğ	meitnerium
∞						26	Бe	155.85	44	Ru	ruthenium 101.1	9/	Os	osmium 190.2	108	Hs	hassium
7						25	Z Z	54.94	43	ည	tecnnetium	75	Re	rhenium 186.2	107	Bh	bohrium
9						24	ວັ	52.00	42	S W	95.94	74	>	tungsten 183.9	106	Sg	seaborgium
2						23	>	50.94	41	Q Z	92.91	73	<u>T</u> a	tantalum 180.9	105	Db	dubnium
4						22		47.88	40	Zr	91.22	72	Ŧ	hafnium 178.5	104	R	rutherfordium
လ						21	လွ	44.96	39	>	98.91	57–71	<u>*</u>	lanthanum 138.9	89-103	** A C	actinium
2		4 B	9.012		24.31	20	S	40.08	38	Š	87.62	56	Ba	barium 137.3	88	Ra	radium 226.0
~	hydrogen 1.008	lithium	6.94	Sodium sodium	22.99	19	Y	39.10	37	Ro	85.47	55	S	caesium 132.9	87	Ŧ	francium

71 Lu lutetium 175.0	103 Lr
70 Yb ytterbium 173.0	102 No nobelium
69 Thulium 168.9	101 Md mendelevium
68 Fr erbium 167.3	100 Fm fermium
67 Ho holmium 164.9	99 ES einsteinium
66 Dy dysprosium 162.5	98 Cf californium
65 Tb terbium 158.9	97 BK berkelium
64 gadolinium 157.3	96 Cm curium
63 EU europium 152.0	95 Am americium
62 Sm samarium 150.4	94 Pu plutonium
Pm promethium	93 Np neptunium
60 Neodymium 144.2	92 U uranium 238.0
59 Pr praseodymium 140.9	91 Pa protactinium
58 Cerium 140.1	90 Th thorium 232.0
* Lanthanide series	** Actinide series
Key:	Symbol Name Standard atomic weight

[Data source: The International Union of Pure and Applied Chemistry Periodic Table of the Elements (2016)]

Formulae

Number of moles $n = \frac{m}{M} = \frac{\text{mass}}{\text{molar mass}}$

Number of moles of solute n = cVNumber of moles of a gas at STP $n = \frac{V}{22.71}$

Ideal gas law PV = nRT

Parts per million $ppm = \frac{mass of solute (mg)}{mass of solution (kg)}$

pH of a solution $pH = -log_{10} [H^{+}]$

Units

Volumes are given in the units of litres (L), or millilitres (mL)

Temperatures are given in the units of degrees Celsius (°C) or kelvin (K)

It may be assumed that 0.0 °C = 273.15 K

Energy changes are given in kilojoules (kJ)

Pressures are given in kilopascals (kPa)

Solution concentrations are given in the units moles per litre (mol L-1),

grams per litre (g L-1) or parts per million (ppm)

Constants

Universal gas constant, R = 8.314 J K⁻¹ mol⁻¹

Avogadro constant, N = 6.022×10²³ mol⁻¹

Volume of 1.00 mol of an ideal gas at 0.0 °C and 100.0 kPa is 22.71 L

STP is 0.0 °C and 100.0 kPa

Equilibrium constant for water at 25 °C, K_w = 1.00×10⁻¹⁴

Solubility rules for ionic solids in water

Soluble in water

Soluble	Exceptions						
	Insoluble Slightly soluble						
Most chlorides	AgCl	PbCl ₂					
Most bromides	AgBr	PbBr ₂					
Most iodides	AgI, PbI ₂						
All nitrates	No exceptions						
All ethanoates							
Most sulfates	SrSO ₄ , BaSO ₄ , PbSO ₄	CaSO ₄ , Ag ₂ SO ₄					

Insoluble in water

Insoluble	Exceptions				
	Soluble	Slightly soluble			
Most hydroxides	NaOH, KOH, Ba(OH) ₂ NH ₄ OH*, AgOH**	Ca(OH) ₂ , Sr(OH) ₂			
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃				
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄				
Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S				

- * NH₃ dissolves in water to form both NH₃ (aq) and NH₄⁺(aq)/OH⁻(aq)
- ** Ag⁺(aq) reacts with OH⁻(aq) to form insoluble Ag₂O

Soluble = more than 0.1 mole dissolves per litre

Slightly soluble = between 0.01 and 0.1 mole dissolves per litre

Insoluble = less than 0.01 mole dissolves per litre

Colours of selected substances

In general, ionic solids have the same colour as that of any coloured ion they contain. Two colourless ions in general produce a white solid. Selected exceptions to these two basic rules are noted below.

Ionic Solid	Colour
copper(II) carbonate	green
copper(II) chloride	green
copper(II) oxide	black
copper(II) sulfide	black
lead(II) iodide	yellow
lead(II) sulfide	grey
manganese(IV) oxide	black
silver carbonate	yellow
silver iodide	pale yellow
silver oxide	brown
silver sulfide	black

Other coloured substances

Most gases and liquids are colourless, and most metals are silvery or grey. Selected exceptions to these basic rules are noted below.

Substance	Colour
copper(s)	salmon pink
gold(s)	yellow
nitrogen dioxide(g)	brown
sulfur(s)	yellow

Coloured halogens

Halogen	Colour of free element
F ₂ (g)	yellow
Cl ₂ (g)	greenish-yellow
$Br_2(\ell)$	red
$I_2(g)$	purple

Halogen	Colour of halogen in aqueous solution
Cl ₂ (aq)	pale yellow
Br ₂ (aq)	orange
I ₂ (aq)	brown

Halogen	Colour of halogen in organic solvent
Br ₂	red
I ₂	purple

Coloured ions in aqueous solution

Cation	Colour
Cr³+	deep green
Co ²⁺	pink
Cu ²⁺	blue
Fe ²⁺	pale green
Fe ³⁺	pale brown
Mn ²⁺	pale pink
Ni ²⁺	green

Anion	Colour
CrO ₄ ²⁻	yellow
Cr ₂ O ₇ ²⁻	orange
MnO ₄ -	purple

Name	Symbol	Structure
alanine	Ala	CH ₃
		H ₂ N — CH — COOH
arginine	Arg	NH
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		H ₂ N — CH— COOH
asparagine	Asn	$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ $
		H ₂ N — CH— COOH
aspartic acid	Asp	CH ₂ — COOH
		H ₂ N — CH— COOH
cysteine	Cys	CH ₂ — SH
		H ₂ N — CH— COOH
glutamine	Gln	$\begin{array}{c} O \\ \parallel \\ CH_2 -\!$
		H ₂ N — CH— COOH
glutamic acid	Glu	CH ₂ — CH ₂ — COOH
		H ₂ N — CH— COOH
glycine	Gly	H ₂ N — CH ₂ — COOH
histidine	His	CH ₂ —N
		H ₂ N — CH— COOH
isoleucine	Ile	$\begin{array}{c} CH_3 \longrightarrow CH \longrightarrow CH_2 \longrightarrow CH_3 \\ \end{array}$
		H ₂ N — CH— COOH

Name	Symbol	Structure
leucine	Leu	$\begin{array}{c} CH_3 {\longleftarrow} CH {\longleftarrow} CH_3 \\ \\ CH_2 \\ \end{array}$
		H ₂ N — CH — COOH
lysine	Lys	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
_		H ₂ N — CH — COOH
methionine	Met	$\begin{array}{c} \operatorname{CH_2} \longrightarrow \operatorname{CH_2} \longrightarrow \operatorname{S} \longrightarrow \operatorname{CH_3} \\ \end{array}$
		H ₂ N — CH — COOH
phenylalanine	Phe	$\begin{array}{c} \operatorname{CH_2-\hspace{-0.1cm}-$
		H ₂ N — CH— COOH
proline	Pro	H COOH
serine	Ser	CH ₂ ——OH
		H ₂ N — CH— COOH
threonine	Thr	CH ₃ — CH — OH
		H ₂ N — CH— COOH
tryptophan	Trp	H N
		CH_2
		H ₂ N — CH— COOH
tyrosine	Tyr	CH ₂ —OH
		H ₂ N — CH— COOH
valine	Val	CH ₃ — CH — CH ₃
		$\begin{array}{c} \operatorname{CH}_3 \longrightarrow \operatorname{CH} \longrightarrow \operatorname{CH}_3 \\ \\ \operatorname{H}_2 \operatorname{N} \longrightarrow \operatorname{CH} \longrightarrow \operatorname{COOH} \end{array}$

Half-reaction		E°(volts)
$F_2(g) + 2 e^- \rightleftharpoons$	2 F ⁻ (aq)	+ 2.89
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \rightleftharpoons$	2 H ₂ O(ℓ)	+ 1.76
$PbO_{2}(s) + SO_{4}^{2-}(aq) + 4 H^{+}(aq) + 2 e^{-} \rightleftharpoons$	$PbSO_4(s) + 2\;H_2O(\ell)$	+ 1.69
2 HCℓO(aq) + 2 H⁺(aq) + 2 e⁻ <i>⇌</i>	$C\ell_{2}(g) + 2 H_{2}O(\ell)$	+ 1.63
MnO ₄ ⁻(aq) + 8 H⁺(aq) + 5 e⁻ <i>⇌</i>	$Mn^{2+}(aq) + 4 H_2O(\ell)$	+ 1.51
Au³+(aq) + 3 e⁻ <i>⇌</i>	Au(s)	+ 1.50
HCℓO(aq) + H⁺(aq) + 2 e⁻ <i>⇌</i>	$C\ell^-(aq) + H_2O(\ell)$	+ 1.49
$PbO_2(s) + 4 H^+(aq) + 2 e^- \rightleftharpoons$	$Pb^{2+}(aq) + 2 H_2O(\ell)$	+ 1.46
$C\ell_2(g) + 2 e^- \rightleftharpoons$	2 Cℓ⁻(aq)	+ 1.36
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \rightleftharpoons$	$2 \text{ Cr}^{3+}(\text{aq}) + 7 \text{ H}_2\text{O}(\ell)$	+ 1.36
$O_2(g) + 4 H^+(aq) + 4 e^- \rightleftharpoons$	2 H ₂ O(<i>l</i>)	+ 1.23
$Br_2(\ell) + 2 e^- \rightleftharpoons$	2 Br ⁻ (aq)	+ 1.08
Ag⁺(aq) + e⁻ <i>⇌</i>	Ag(s)	+ 0.80
Fe³+(aq) + e⁻ <i>⇌</i>	Fe ²⁺ (aq)	+ 0.77
$O_2(g) + 2 H^+(aq) + 2 e^- \rightleftharpoons$	$H_2O_2(aq)$	+ 0.70
$I_2(s) + 2 e^- \rightleftharpoons$	2 I ⁻ (aq)	+ 0.54
$O_2(g) + 2 H_2O(\ell) + 4 e^- \rightleftharpoons$	4 OH⁻(aq)	+ 0.40
Cu²+(aq) + 2 e⁻ <i>⇐</i>	Cu(s)	+ 0.34
S(s)+ 2 H⁺(aq) + 2 e⁻ <i>⇐</i>	H ₂ S(aq)	+ 0.17
2 H⁺(aq) + 2 e⁻ <i>⇐</i>	$H_2(g)$	0 exactly
Pb²+(aq) + 2 e⁻ <i>⇌</i>	Pb(s)	-0.13
Sn²+(aq) + 2 e⁻ <i>⇐</i>	Sn(s)	-0.14
Ni²⁺(aq) + 2 e⁻ <i>⇐</i>	Ni(s)	-0.24
$Co^{2+}(aq) + 2 e^{-} \rightleftharpoons$	Co(s)	-0.28
$PbSO_4(s) + 2 e^- \rightleftharpoons$	$Pb(s) + SO_4^{2-}(aq)$	-0.36
$Cd^{2+}(aq) + 2 e^{-} \rightleftharpoons$	Cd(s)	-0.40
$2 CO_{2}(g) + 2 H^{+}(aq) + 2 e^{-} \rightleftharpoons$	$H_2C_2O_4(aq)$	-0.43
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons$	Fe(s)	-0.44
Cr³+(aq) + 3 e⁻ <i>←</i>	Cr(s)	-0.74
Zn²+(aq) + 2 e⁻ ⇌	Zn(s)	-0.76
$2 H_2O(\ell) + 2 e^- \rightleftharpoons$	$H_2(g) + 2 OH^-(aq)$	- 0.83
Mn²+(aq) + 2 e⁻ <i>⇌</i>	Mn(s)	– 1.18
Aℓ³⁺(aq) + 3 e⁻ <i>⇌</i>	$A\ell(s)$	– 1.68
Mg²+(aq) + 2 e⁻ <i>⇌</i>	Mg(s)	− 2.36
Na⁺(aq) + e⁻ <i>⇌</i>	. ,	- 2.71
Ca ²⁺ (aq) + 2 e ⁻ ⇌		− 2.87
Sr ²⁺ (aq) + 2 e ⁻ ⇌		- 2.90
Ba ²⁺ (aq) + 2 e ⁻ ⇌		- 2.91
K⁺(aq) + e⁻ <i>=</i>	K(s)	-2.94

[Data source: Aylward, G.H., & Findlay, T. (2008). SI Chemical Data (6th ed.). Queensland: John Wiley & Sons Australia, Ltd.]