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Section One: Calculator-free 35% (47 Marks) 
 
Question 1  (4 marks) 
 
Using the identity ( ) ( )2sin cos sin sinA B A B A B= + + − , evaluate exactly the definite integral 

2

0

56sin cos
2 2
x x dx

π

   
   
   ∫ . 

 
Solution 

Using the given identity ( ) ( )2sin cos sin sin  A B A B A B= + + −  

( )

5 1 5 56sin cos 6 sin sin
2 2 2 2 2 2 2

3 sin 3 sin 2

    

                            

x x x x x x

x x

        = × + + −                
= +

 

 

( )
2 2

0 0

2

0

56sin cos 3sin 3 3sin 2
2 2

3cos 2cos3
2

3 3cos 3cos 0cos cos 0
2 2 2

    

                                 

                                 

                

x x dx x x dx

xx

π π

π

π π

    = +   
   

 = − −  

   = − − − − −      

∫ ∫

( ) ( ) ( )3 1 3 1
0 1

2 2

3 5 4
2 2

                 

                                     

−   
= − − − − −   

   
   = − − =   
   

 

Specific behaviours 
 determines the factor 3  in relating the expressions 
 obtains the integrand terms sin 3 sin 2x x+  
 anti-differentiates term by term correctly 
 evaluates the definite integral correctly 
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Question 2  (6 marks) 
 
Consider the function ( ) 4 3 22 14 8 40P z z z z z= − + − + ,  defined over the complex numbers. 
 
(a) Show that ( )2z i−  is a factor of ( ).P z  (2 marks) 
 

Solution 
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( )

4 3 22 2 2 2 14 2 8 2 40

16 1 16 1 14 4 1 16 40

16 16 56 16 40 1
0

  
            
               ... 
            

P i i i i i

i i

i i

= − + − +

= − − + − − +

= + − − +

=

 

Hence ( )2z i−  is a factor of ( ).P z  
Specific behaviours 

 substitutes 2z i=  correctly into ( )P z  

 obtains the 5 terms in expression (1) to deduce ( )2 0P i =  
 
 
(b) Hence or otherwise, solve the equation ( ) 0P z = ,  giving solutions in the form a bi+ . 

 (4 marks) 
 

Solution 
Since ( )2z i−  is a factor then so is ( )2z i+ . 

Hence ( )2z i+ ( ) ( )22 4z i z− = +  is also a factor of ( ).P z  

( ) ( ) ( )2 4    P z z Q z∴ = +  where ( ) 2 2 10Q z z z= − +   
i.e. 
Solving  ( ) 0Q z =      

( )
( )

2

2

2

2 10 0

1 9 0

1 9
. . 1 3

  

  

  
   

z z

z

z
i e z i

− + =

∴ − + =

∴ − = −

= ±

       OR      ( )2 4 0

2

  

   

z

z i

∴ + =

∴ = ±

 

Specific behaviours 
 deduces ( )2z i+  is a factor of ( )P z  or states z = –2i is a solution 

 deduces ( )2 4z +  is a factor of ( )P z  

 factorises ( ) ( )( )2 24 2 10as  P z z z z+ − +  

 states 1 3z i= ±  as solutions to ( ) 0P z =  
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Question 3 (5 marks) 
 

(a) Given that 
( )

2

2 2

2 5 6
3 3

      x x a b c
x x x x x
+ +

= + +
+ +

, determine the values of a, b and c. 

 (2 marks) 
 

Solution 
( ) ( )

( )
( ) ( )

( )

2

2 2

2

2

3 3
3 3

3 3
3

    
         

    
                               

ax x b x cxa b c
x x x x x

a c x a b x b
x x

+ + + +
+ + =

+ +

+ + + +
=

+

 

 
Hence equating co-efficients we obtain 2

3 5
3 6

a c
a b
b

+ =

+ =

=

 

Solving obtains 1, 2, 1   a b c= = =  
Specific behaviours 

 obtains the numerator correctly in terms of , ,a b c  in simplifying the fractions 
 determines the values for , ,a b c  correctly 

 
 

(b) Hence determine 
( )

2

2

2 5 6
3

x x dx
x x
+ +
+∫ . (3 marks) 

 
Solution 

( )
2

2 2

2 5 6 1 2 1
3 3

2ln ln 3

         

                                   

x x dx dx
x x x x x

x x c
x

+ +
= + +

+ +

= − + + +

∫ ∫
 

Specific behaviours 
 expresses the integrand in terms of the partial fractions correctly 
 anti-differentiates correctly (using absolute value of the natural logarithm) 
 uses an integration constant 
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Question 4  (7 marks) 
 
Functions , and  f g h  are defined such that: 
 

( ) 1
1

f x
x

=
−

, ( ) 2g x x= , ( )h x x= . 

 
(a) Determine the defining rule for ( )( )f h x . (1 mark) 
 

Solution 

( )( ) 1
1

f h x
x

=
−

 

Specific behaviours 
 states the correct defining rule 

 
 
(b) Determine the domain for ( )( )f h x . (2 marks) 
 

Solution 
{ | 0, 1} fohD x x x= ≥ ≠   

Specific behaviours 
 states 0x ≥  
 states  1x ≠   

 
 
(c) Determine the range for ( )( )f h x . (2 marks) 
 

Solution 
When 1x >      ( )( ) 0f h x >  

When 0 1x≤ <      1 1 0x− ≤ − <      
11

1
     

x
∴ − ≥

−
  

 
Hence { | 0 1}  fohR y y y= > ∪ ≤ −  

Specific behaviours 
 states 0y >  
 states 1y ≤ −  
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Question 4 (continued) 
 

Alternative Solution 

Graph 1y x= −  and then graph its reciprocal function ( )( ) 1
1

y f h x
x

= =
−

 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                          Hence { | 0 1}  fohR y y y= > ∪ ≤ −  

Specific behaviours 
 states 0y >  
 states 1y ≤ −  

 
 

(d) Is it true that ( )( )( ) ( )1
1

    f h g x f x
x

= =
−

? Justify your answer. (2 marks) 

 
Solution 

The statement is FALSE. 

( )( )h g x = 2 0  x x= ≥  

Hence ( )( )( )
2

1 1
11

    f h g x
xx

= =
−−

     { | , 1}
{ | 0 1}

 
  

fohog

fohog

D x x x
R y y y

= ∈ ≠ ±

= > ∪ ≤ −


  

But ( ) 1
1

f x
x

=
−

     { | , 1}
{ | 0 }

 fohog

fohog

D x x x
R y y

= ∈ ≠

= >


 

  ∴  ( )( )( )  f h g x ≠  ( )f x  as they have different DOMAIN and RANGE values. 

Specific behaviours 
 states that the statement is false   
 justifies the statement is false 
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Alternative Solution 
The statement is FALSE. 
This would be true if ( )( )h g x x=   i.e. true if 2x x= . 

But actually 2   x x x= ≠ . 
Specific behaviours 

 states that the statement is false 
 justifies the statement is false 
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Question 5   (6 marks) 
 
The graph of ( )y g x=  is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Sketch the graph of ( )1y g x−=  on the axes above. (3 marks) 
 

Solution 
See above graph axes. 

Specific behaviours 
 indicates the points ( ) ( )3,4 , 2,0 − −  and ( )2, 5−    
 indicates the range 4y ≤  (arrow on graph not required) 
 indicates symmetry of ( )1y g x−=  with ( )y g x=  about the line y x=   

 
 

(b) Given that ( ) ( )21 4 3
16

g x x= − −  where 4x ≤ , determine the defining rule for

 ( )1y g x−= . (3 marks) 
 

Solution 

( ) ( )

( ) ( )

2 21

2

1 1: 4 3 : 4 3
16 16

16( 3) 4 1

4 4 3

                      

                                                       . . . 

                                                         

g y x g x y

x y

y x

−= − − = − −

∴ + = −

− = ± +

  

Since 1 gg
R D− =  ( )4x ≤    then   ( )1 4 4 3  g x x− = − +  

Specific behaviours 
 interchanges the ,x y  coordinates to obtain the inverse 
 manipulates the equation correctly to obtain statement 1 
 writes the correct defining rule 

 
  

( )1y g x−=   

y x=   
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Question 6  (6 marks) 

Using the substitution 2sinx θ= , evaluate exactly 
3 2

0

1
4
x dx−∫ . 

 
Solution 

When 0, 0 x θ= =      2cos 2cos     dx dx d
d

θ θ θ
θ
= ∴ =   

and 3,
3

 x πθ= =   

( )

( )

( )

( )

3 2 23

0 0

3
2

0

3
2

0

3 3
2

0 0

4sin1 1 2cos
4 4

1 sin 2cos

cos 2cos

2cos 1 cos 2

       

                           

                           

                               

             

x dx d

d

d

d d

π

π

π

π π

θ θ θ

θ θ θ

θ θ θ

θ θ θ θ

∴ − = −

= −

=

= = +

∫ ∫

∫

∫

∫ ∫

3

0

sin 2
2

3
3 4

                                        

                                                     

π

θθ

π

 = +  

= +
 

Specific behaviours 
 changes the limits correctly 
 obtains dx  in terms of dθ  correctly 
 simplifies the integrand correctly using the identity 2 2sin cos 1θ θ+ =  
 uses the cos 2θ  identity to correctly re-write the integrand 
 anti-differentiates the integrand correctly 
 evaluates the definite integral correctly 
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Question 7   (4 marks) 
 
The graphs of ( )y f x=  and ( )y f x=  are shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given that ( )1y f x−=  is also a function, sketch a possible graph for ( )y f x=  on the axes 

below. Justify your answer considering ( )1y f x−= . 
 

Solution 
There are many possibilities for ( )y f x= . Two of these are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since ( )1y f x−=  is a function then ( )y f x=  over its domain 2 2x− ≤ ≤  must be a ONE-

TO-ONE function (which does not occur with possibility A or D). Hence ( )y f x=  could be 

possibility B or C. Alternatively, function ( )f x  must satisfy the ‘horizontal’ line test. 
Specific behaviours 

 indicates the points ( ) ( ) ( )0,2 , 1.5,0 , 2, 0.5  −  
 indicates 1.5y x= −  for 0 2x< ≤  
 indicates 0.5 2y x= +  OR 0.5 2y x= − −  for 2 0x− ≤ <  or equivalent to obtain  
    y = f (|x|) and y = |f (x)| correctly 
 justifies that ( )y f x=  must be a one-to-one function so that ( )1y f x−=  is a function 

  

( )f x  ( )f x   

Possibility B Possibility A 
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Alternative Solution 
Other possibilities for ( )y f x= :  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Possibility C Possibility D 
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Question 8  (5 marks) 
 
The top part of a wine glass is modelled by rotating the graph of ( )2 2 236x y x y= −  from 0y =  

to 5y =  about the y  axis as shown below. Dimensions are measured in centimetres. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Show that the volume, V  cm3, when the glass is full is given by  
5 2

3
0

36
1

 yV dy
y

π=
+∫ . 

 (1 mark) 
 

Solution 
From ( )2 2 236x y x y= −  

2 2 2 336  x y x y∴ = −   
2 2 3 236  x x y y∴ + =  

i.e. ( )2 3 21 36x y y+ =   gives 

2
2

2
3 3

36 6
1 1

   y yx
y y

 
 = =
 + + 

  

Hence 

2

2

3

6
1

    ydV r dy dy
y

π π
 
 = =
 + 

. 

To obtain the TOTAL of all the possible thin cylindrical disks we add (integrate) over 
the interval of the possible y  values i.e. integrate from 0y =  to 5y = . 
 

Hence volume 

2
5 5 5 2

33
0 0 0

6 36
11

         y yV dV dy dy
yy

π π
 
 = = =
  ++ 

∫ ∫ ∫  

Specific behaviours 
 obtains the x  coordinate correctly from the given curve equation (or 2x ) 
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(b) Determine the exact volume V cm3. (4 marks) 
 

Solution 
2

5 5 2

33
0 0

6 36
11

         y yV dy dy
yy

π π
 
 = =
  ++ 

∫ ∫  

Using 31u y= +    2
23

3
       du duy dy

dy y
= ∴ =   

When 0, 1
5, 126

 
 

y u
y u
= =
= =

     

( )

2
2

1

126

1
1

126

126

136 . .
3

12 12ln

12 ln126

       

               

                               

duV y
u y

du u
u

π

π π

π

∴ =

= =   

=

∫

∫

 

Specific behaviours 
 changes the limits correctly 
 obtains the integrand correctly in terms of u   
 anti-differentiates correctly (absolute value of natural logarithm not required) 
 obtains the exact value for the volume in terms of π  and a natural logarithm  
    correctly 

 
 

Alternative Solution 
2

5 5 2

33
0 0

6 36
11

         y yV dy dy
yy

π π
 
 = =
  ++ 

∫ ∫  

( )

( )

( )
( )

25

3
0

5
3

3
0

53

0

12 3
1

112 1 .
1

12 ln 1

12 ln126

       

           

            

           

y
V dy

y

d y dy
dy y

y

π

π

π

π

∴ =
+

= +
+

 = + 
=

∫

∫

  

Specific behaviours 
 recognises 236y  as a multiple of the derivative of 31 y+   

 obtains the numerator as 12  times the derivative of 31 y+  
 anti-differentiates correctly (absolute value of natural logarithm not required) 
 obtains the exact value for the volume in terms of π  and a natural logarithm  
    correctly 
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Question 9  (4 marks) 
 
Consider the complex equation 1 0nz − = , where n  is any positive integer 3n ≥ . 
 
If the roots are designated as 0 1 2 1, , , ... ,     nz z z z − , then determine the exact value for the 
product of the roots 0 1 2 1...   np z z z z −= × × × × . 
 

Solution 

( )1 0nz cis= =   0 2 2      k kz cis cis
n n
π π+   ∴ = =   

   
 where 0,1, 2, ... , 1  k n= −  

( )0 0 1  z cis∴ = = , 1
2 z cis
n
π =  

 
, 2

4 z cis
n
π =  

 
, 3

6 z cis
n
π =  

 
, 4

8 z cis
n
π =  

 
 

( )
1

2 1
 n

n
z cis

n
π

−

− 
=  

 
 

( ) ( )

( )

( )( )

( )( )

( )( ) ( ) ( )

2 12 4 60 ...

2 12 4 60 ...

2 1 2 3 ... 1

12
2

1 cos 1 sin 1

    

    

      

     

       

n
p cis cis cis cis cis

n n n n

n
cis

n n n n

cis n
n

n n
cis

n

cis n n i n

ππ π π

ππ π π

π

π

π π π

−      =       
       

− 
= + + + + 

 
 = + + + − 
 

− 
= × 

 
= − = − + −

 

 
Since ( )sin 1 0n π− =  for all integer values of n  and ( )cos 1 1  n π− = ± , then 
Product 1p =     if n  is ODD 
             1p = −   if n  is EVEN.  

Specific behaviours 

 expresses the roots in the form 2kcis
n
π 

 
 

  where 0,1, 2, ... , 1  k n= −  

 forms the product ( )2 12 4 ...
n

p cis cis cis
n n n

ππ π −    =     
     

 correctly 

 uses DeMoivres Theorem to obtain ( )( )1cis n π−  correctly 
 states the two possible values correctly for n  even and odd 
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Alternative Solution  
Equation is 1 0nz − =  
Given that the roots are: 0 1 2 1, , , ... ,     nz z z z −  means that the equation can be written in the 

form ( )( )( ) ( )0 1 2 1... 0  nz z z z z z z z −− − − − =   

i.e. ( )( )( ) ( )0 1 2 1... 1  n
nz z z z z z z z z−− − − − = −  

Hence the LHS constants ( )( )( ) ( )0 1 2 1... 1  nz z z z −− − − − = −      (equating constants) 
 
Since there are n  factors : 
IF n  is EVEN  then we have   ( )( )( ) ( )0 1 2 1... 1  nz z z z − = −      i.e. 1  p = −   

IF n  is ODD  then we have   ( )( )( ) ( )0 1 2 1... 1  nz z z z −− = −      i.e. 1  p =   
Specific behaviours 

 expresses the LHS in the form ( )( )( ) ( )0 1 2 1... nz z z z z z z z −− − − −  

 states that the product of the constant terms ( )( )( ) ( )0 1 2 1... 1  nz z z z −− − − − = −  
 states that the product depends on whether n  is even or odd 
 states the correct value for the product for each case 
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