MATHEMATICS SPECIALIST

Calculator-free

ATAR course examination 2019

Marking key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section One: Calculator-free

Question 1

Using the identity $2 \sin A \cos B=\sin (A+B)+\sin (A-B)$, evaluate exactly the definite integral $\int_{0}^{\frac{\pi}{2}} 6 \sin \left(\frac{5 x}{2}\right) \cos \left(\frac{x}{2}\right) d x$.

Solution

Using the given identity $2 \sin A \cos B=\sin (A+B)+\sin (A-B)$

$$
\begin{aligned}
6 \sin \left(\frac{5 x}{2}\right) \cos \left(\frac{x}{2}\right) & =6 \times \frac{1}{2}\left(\sin \left(\frac{5 x}{2}+\frac{x}{2}\right)+\sin \left(\frac{5 x}{2}-\frac{x}{2}\right)\right) \\
& =3(\sin 3 x+\sin 2 x)
\end{aligned}
$$

$$
\int_{0}^{\frac{\pi}{2}} 6 \sin \left(\frac{5 x}{2}\right) \cos \left(\frac{x}{2}\right) d x=\int_{0}^{\frac{\pi}{2}}(3 \sin 3 x+3 \sin 2 x) d x
$$

$$
=\left[-\cos 3 x-\frac{3 \cos 2 x}{2}\right]_{0}^{\frac{\pi}{2}}
$$

$$
=\left[-\cos \frac{3 \pi}{2}-\frac{3 \cos \pi}{2}\right]-\left[-\cos 0-\frac{3 \cos 0}{2}\right]
$$

$$
=\left[-(0)-\frac{3(-1)}{2}\right]-\left[-1-\frac{3(1)}{2}\right]
$$

$$
=\left(\frac{3}{2}\right)-\left(-\frac{5}{2}\right)=4
$$

Specific behaviours

\checkmark determines the factor 3 in relating the expressions
\checkmark obtains the integrand terms $\sin 3 x+\sin 2 x$
\checkmark anti-differentiates term by term correctly
\checkmark evaluates the definite integral correctly

Question 2

Consider the function $P(z)=z^{4}-2 z^{3}+14 z^{2}-8 z+40$, defined over the complex numbers.
(a) Show that $(z-2 i)$ is a factor of $P(z)$.

	Solution
	$\begin{aligned} P(2 i) & =(2 i)^{4}-2(2 i)^{3}+14(2 i)^{2}-8(2 i)+40 \\ & =16(1)-16(-1)(i)+14(4)(-1)-16 i+40 \\ & =16+16 i-56-16 i+40 \quad \ldots(1) \\ & =0 \end{aligned}$ Hence $(z-2 i)$ is a factor of $P(z)$.
	Specific behaviours
	\checkmark substitutes $z=2 i$ correctly into $P(z)$ \checkmark obtains the 5 terms in expression (1) to deduce $P(2 i)=0$

(b) Hence or otherwise, solve the equation $P(z)=0$, giving solutions in the form $a+b i$.
(4 marks)

Solution

Since $(z-2 i)$ is a factor then so is $(z+2 i)$.
Hence $(z+2 i)(z-2 i)=\left(z^{2}+4\right)$ is also a factor of $P(z)$.
$\therefore P(z)=\left(z^{2}+4\right) Q(z)$ where $Q(z)=z^{2}-2 z+10$
i.e.

Solving $Q(z)=0 \quad z^{2}-2 z+10=0 \quad$ OR $\quad \therefore\left(z^{2}+4\right)=0$
$\therefore(z-1)^{2}+9=0 \quad \therefore z= \pm 2 i$
$\therefore(z-1)^{2}=-9$
i.e. $z=1 \pm 3 i$

Specific behaviours

\checkmark deduces $(z+2 i)$ is a factor of $P(z)$ or states $z=-2 i$ is a solution
\checkmark deduces $\left(z^{2}+4\right)$ is a factor of $P(z)$
\checkmark factorises $P(z)$ as $\left(z^{2}+4\right)\left(z^{2}-2 z+10\right)$
\checkmark states $z=1 \pm 3 i$ as solutions to $P(z)=0$

Question 3

(a) Given that $\frac{2 x^{2}+5 x+6}{x^{2}(x+3)}=\frac{a}{x}+\frac{b}{x^{2}}+\frac{c}{x+3}$, determine the values of a, b and c.

$$
\begin{aligned}
\frac{a}{x}+\frac{b}{x^{2}}+\frac{c}{x+3} & =\frac{a x(x+3)+b(x+3)+c x^{2}}{x^{2}(x+3)} \\
& =\frac{(a+c) x^{2}+(3 a+b) x+3 b}{x^{2}(x+3)}
\end{aligned}
$$

Hence equating co-efficients we obtain $a+c=2$

$$
\begin{aligned}
& 3 a+b=5 \\
& 3 b=6
\end{aligned}
$$

Solving obtains $a=1, \quad b=2, c=1$

Specific behaviours

\checkmark obtains the numerator correctly in terms of a, b, c in simplifying the fractions
\checkmark determines the values for a, b, c correctly
(b) Hence determine $\int \frac{2 x^{2}+5 x+6}{x^{2}(x+3)} d x$.

$\int \frac{2 x^{2}+5 x+6}{x^{2}(x+3)} d x=$ Solution $=\ln \|x\|-\frac{1}{x}+\frac{2}{x^{2}}+\frac{1}{x+3} d x$ Specific behaviours \checkmark expresses the integrand in terms of the partial fractions correctly \checkmark anti-differentiates correctly (using absolute value of the natural logarithm) \checkmark uses an integration constant

Question 4

Functions f, g and h are defined such that:
$f(x)=\frac{1}{x-1}, g(x)=x^{2}, h(x)=\sqrt{x}$.
(a) Determine the defining rule for $f(h(x))$.

$f(h(x))=\frac{1}{\sqrt{x}-1} \quad$ Solution
Specific behaviours
states the correct defining rule

(b) Determine the domain for $f(h(x))$.

	Solution
$D_{\text {foh }}=\{x \mid x \geq 0, x \neq 1\}$	
	Specific behaviours
\checkmark states $x \geq 0$	
\checkmark states $x \neq 1$	

(c) Determine the range for $f(h(x))$.

Solution	
When $x>1 \quad f(h(x))>0$	
When $0 \leq x<1 \quad-1 \leq \sqrt{x}-1<0 \quad \therefore \quad-1 \geq \frac{1}{\sqrt{x}-1}$	
Hence $R_{\text {foh }}=\{y \mid y>0 \cup y \leq-1\}$	
\quad Specific behaviours	
\checkmark states $y>0$	
\checkmark states $y \leq-1$	

Question 4 (continued)

(d) Is it true that $f(h(g(x)))=\frac{1}{x-1}=f(x)$? Justify your answer.

Solution

The statement is FALSE.
$h(g(x))=\sqrt{x^{2}}=|x| \geq 0$
Hence $f(h(g(x)))=\frac{1}{\sqrt{x^{2}}-1}=\frac{1}{|x|-1} \quad \begin{aligned} & D_{\text {fohog }}=\{x \mid x \in \mathbb{R}, x \neq \pm 1\} \\ & R_{\text {fohog }}=\{y \mid y>0 \cup y \leq-1\}\end{aligned}$
But $f(x)=\frac{1}{x-1} \quad D_{\text {fohog }}=\{x \mid x \in \mathbb{R}, x \neq 1\}$

$$
R_{\text {fohog }}=\{y \mid y>0\}
$$

$\therefore \quad f(h(g(x))) \neq f(x)$ as they have different DOMAIN and RANGE values.

Specific behaviours

\checkmark states that the statement is false
\checkmark justifies the statement is false

Alternative Solution

The statement is FALSE.
This would be true if $h(g(x))=x$ i.e. true if $\sqrt{x^{2}}=x$.
But actually $\sqrt{x^{2}}=|x| \neq x$.

Specific behaviours

\checkmark states that the statement is false
\checkmark justifies the statement is false

Question 5

The graph of $y=g(x)$ is shown below.

(a) Sketch the graph of $y=g^{-1}(x)$ on the axes above.

Solution
See above graph axes. \quad Specific behaviours
\checkmark indicates the points $(-3,4),(-2,0)$ and $(2,-5)$
\checkmark indicates the range $y \leq 4$ (arrow on graph not required)
\checkmark indicates symmetry of $y=g^{-1}(x)$ with $y=g(x)$ about the line $y=x$

(b) Given that $g(x)=\frac{1}{16}(x-4)^{2}-3$ where $x \leq 4$, determine the defining rule for $y=g^{-1}(x)$.

	Solution		
$g: \quad y=\frac{1}{16}(x-4)^{2}-3 \quad g^{-1}: \quad x=\frac{1}{16}(y-4)^{2}-3$			
$\therefore \quad 16(x+3)=(y-4)^{2} \quad \ldots(1)$			
$y-4= \pm 4 \sqrt{x+3}$			
Since $R_{g^{-1}}=D_{g}(x \leq 4)$ then $g^{-1}(x)=4-4 \sqrt{x+3}$			
Specific behaviours			
\checkmark interchanges the x, y coordinates to obtain the inverse \checkmark manipulates the equation correctly to obtain statement 1 \checkmark writes the correct defining rule			

Question 6

Using the substitution $x=2 \sin \theta$, evaluate exactly $\int_{0}^{\sqrt{3}} \sqrt{1-\frac{x^{2}}{4}} d x$.

Solution

When $x=0, \theta=0 \quad \frac{d x}{d \theta}=2 \cos \theta \quad \therefore d x=2 \cos \theta d \theta$
and $x=\sqrt{3}, \theta=\frac{\pi}{3}$

$$
\begin{aligned}
\therefore \int_{0}^{\sqrt{3}} \sqrt{1-\frac{x^{2}}{4}} d x & =\int_{0}^{\frac{\pi}{3}} \sqrt{1-\frac{4 \sin ^{2} \theta}{4}}(2 \cos \theta d \theta) \\
& =\int_{0}^{\frac{\pi}{3}} \sqrt{1-\sin ^{2} \theta}(2 \cos \theta d \theta) \\
= & \int_{0}^{\frac{\pi}{3}} \sqrt{\cos ^{2} \theta}(2 \cos \theta d \theta) \\
= & \int_{0}^{\frac{\pi}{3}} 2 \cos ^{2} \theta d \theta \\
= & \int_{0}^{\frac{\pi}{3}}(1+\cos 2 \theta) d \theta \\
& =\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{3}} \\
& =\frac{\pi}{3}+\frac{\sqrt{3}}{4}
\end{aligned}
$$

Specific behaviours

\checkmark changes the limits correctly
\checkmark obtains $d x$ in terms of $d \theta$ correctly
\checkmark simplifies the integrand correctly using the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$
\checkmark uses the $\cos 2 \theta$ identity to correctly re-write the integrand
\checkmark anti-differentiates the integrand correctly
\checkmark evaluates the definite integral correctly

Question 7

The graphs of $y=f(|x|)$ and $y=|f(x)|$ are shown below.

Given that $y=f^{-1}(x)$ is also a function, sketch a possible graph for $y=f(x)$ on the axes below. Justify your answer considering $y=f^{-1}(x)$.

Solution

There are many possibilities for $y=f(x)$. Two of these are:

Since $y=f^{-1}(x)$ is a function then $y=f(x)$ over its domain $-2 \leq x \leq 2$ must be a ONE-TO-ONE function (which does not occur with possibility A or D). Hence $y=f(x)$ could be possibility B or C . Alternatively, function $f(x)$ must satisfy the 'horizontal' line test.

Specific behaviours

\checkmark indicates the points $(0,2),(1.5,0),(2,-0.5)$
\checkmark indicates $y=1.5-x$ for $0<x \leq 2$
\checkmark indicates $y=0.5 x+2$ OR $y=-0.5 x-2$ for $-2 \leq x<0$ or equivalent to obtain $y=f(|x|)$ and $y=|f(x)|$ correctly
\checkmark justifies that $y=f(x)$ must be a one-to-one function so that $y=f^{-1}(x)$ is a function

Question 8

The top part of a wine glass is modelled by rotating the graph of $x^{2}=y^{2}\left(36-x^{2} y\right)$ from $y=0$ to $y=5$ about the y axis as shown below. Dimensions are measured in centimetres.

(a) Show that the volume, $V \mathrm{~cm}^{3}$, when the glass is full is given by $V=\pi \int_{0}^{5} \frac{36 y^{2}}{1+y^{3}} d y$.

Solution

From $x^{2}=y^{2}\left(36-x^{2} y\right)$
$\therefore x^{2}=36 y^{2}-x^{2} y^{3}$
$\therefore x^{2}+x^{2} y^{3}=36 y^{2}$
i.e. $x^{2}\left(1+y^{3}\right)=36 y^{2}$ gives $x^{2}=\frac{36 y^{2}}{1+y^{3}}=\left(\frac{6 y}{\sqrt{1+y^{3}}}\right)^{2}$

Hence $d V=\pi r^{2} d y=\pi\left(\frac{6 y}{\sqrt{1+y^{3}}}\right)^{2} d y$.
To obtain the TOTAL of all the possible thin cylindrical disks we add (integrate) over the interval of the possible y values i.e. integrate from $y=0$ to $y=5$.

Hence volume $V=\int_{0}^{5} d V=\int_{0}^{5} \pi\left(\frac{6 y}{\sqrt{1+y^{3}}}\right)^{2} d y=\pi \int_{0}^{5} \frac{36 y^{2}}{1+y^{3}} d y$

Specific behaviours

\checkmark obtains the x coordinate correctly from the given curve equation (or x^{2})
(b) Determine the exact volume $V \mathrm{~cm}^{3}$.

Solution

$V=\int_{0}^{5} \pi\left(\frac{6 y}{\sqrt{1+y^{3}}}\right)^{2} d y=\pi \int_{0}^{5} \frac{36 y^{2}}{1+y^{3}} d y$
Using $u=1+y^{3} \quad \frac{d u}{d y}=3 y^{2} \quad \therefore \quad d y=\frac{d u}{3 y^{2}}$
When $\begin{aligned} y & =0, u=1 \\ y & =5, u=126\end{aligned}$

$$
\begin{aligned}
& \therefore \quad V=\pi \int_{1}^{126} 36 y^{2} \cdot \frac{1}{u} \cdot \frac{d u}{3 y^{2}} \\
& =\pi \int_{1}^{126} \frac{12}{u} d u=\pi[12 \ln |u|]_{1}^{126} \\
& =12 \pi(\ln 126)
\end{aligned}
$$

Specific behaviours

\checkmark changes the limits correctly
\checkmark obtains the integrand correctly in terms of u
\checkmark anti-differentiates correctly (absolute value of natural logarithm not required)
\checkmark obtains the exact value for the volume in terms of π and a natural logarithm correctly

Question 9

Consider the complex equation $z^{n}-1=0$, where n is any positive integer $n \geq 3$.
If the roots are designated as $z_{0}, z_{1}, z_{2}, \ldots, z_{n-1}$, then determine the exact value for the product of the roots $p=z_{0} \times z_{1} \times z_{2} \times \ldots \times z_{n-1}$.

$$
\begin{aligned}
& z^{n}=1=\operatorname{cis}(0) \therefore \quad \text { Solution } \\
& \therefore \quad z_{0}=\operatorname{cis}(0)=1, z_{1}=\operatorname{cis}\left(\frac{2 \pi}{n}\right), z_{2}=\operatorname{cis}\left(\frac{4 \pi}{n}\right), z_{3}=\operatorname{cis}\left(\frac{6 \pi}{n}\right), z_{4}=\operatorname{cis}\left(\frac{8 \pi}{n}\right) \\
& z_{n-1}=\operatorname{cis}\left(\frac{2(n-1) \pi}{n}\right) \\
& p=\operatorname{cis}(0) \operatorname{cis}\left(\frac{2 \pi}{n}\right) \operatorname{cis}\left(\frac{4 \pi}{n}\right) \operatorname{cis}\left(\frac{6 \pi}{n}\right) \ldots \operatorname{cis}\left(\frac{2(n-1) \pi}{n}\right) \\
&=\operatorname{cis}\left(0+\frac{2 \pi}{n}+\frac{4 \pi}{n}+\frac{6 \pi}{n}+\ldots \frac{2(n-1) \pi}{n}\right) \\
&=\operatorname{cis}\left(\frac{2 \pi}{n}(1+2+3+\ldots(n-1))\right) \\
&=\operatorname{cis}\left(\frac{2 \pi}{n} \times \frac{(n-1)(n)}{2}\right) \\
&=\operatorname{cis}((n-1) \pi)=\cos (n-1) \pi+i \sin (n-1) \pi
\end{aligned}
$$

Since $\sin (n-1) \pi=0$ for all integer values of n and $\cos (n-1) \pi= \pm 1$, then
Product $p=1$ if n is ODD $p=-1$ if n is EVEN.

Specific behaviours

\checkmark expresses the roots in the form cis $\left(\frac{2 k \pi}{n}\right)$ where $k=0,1,2, \ldots, n-1$
\checkmark forms the product $p=\operatorname{cis}\left(\frac{2 \pi}{n}\right)$ cis $\left(\frac{4 \pi}{n}\right) \ldots$ cis $\left(\frac{2(n-1) \pi}{n}\right)$ correctly
\checkmark uses DeMoivres Theorem to obtain cis $((n-1) \pi)$ correctly
\checkmark states the two possible values correctly for n even and odd

Alternative Solution

Equation is $z^{n}-1=0$
Given that the roots are: $z_{0}, z_{1}, z_{2}, \ldots, z_{n-1}$ means that the equation can be written in the form $\left(z-z_{0}\right)\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n-1}\right)=0$
i.e. $\left(z-z_{0}\right)\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n-1}\right)=z^{n}-1$

Hence the LHS constants $\left(-z_{0}\right)\left(-z_{1}\right)\left(-z_{2}\right) \ldots\left(-z_{n-1}\right)=-1 \quad$ (equating constants)
Since there are n factors:
IF n is EVEN then we have $\left(z_{0}\right)\left(z_{1}\right)\left(z_{2}\right) \ldots\left(z_{n-1}\right)=-1 \quad$ i.e. $p=-1$
IF n is ODD then we have $-\left(z_{0}\right)\left(z_{1}\right)\left(z_{2}\right) \ldots\left(z_{n-1}\right)=-1 \quad$ i.e. $p=1$

Specific behaviours

\checkmark expresses the LHS in the form $\left(z-z_{0}\right)\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n-1}\right)$
\checkmark states that the product of the constant terms $\left(-z_{0}\right)\left(-z_{1}\right)\left(-z_{2}\right) \ldots\left(-z_{n-1}\right)=-1$
\checkmark states that the product depends on whether n is even or odd
\checkmark states the correct value for the product for each case

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

Published by the School Curriculum and Standards Authority of Western Australia

