MATHEMATICS METHODS

Calculator-assumed

ATAR course examination 2018

Ratified Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section Two: Calculator-assumed

Question 8

Consider the function $f(x)=\log _{a}(x-1)$ where $a>1$.
(a) On the axes below, sketch the graph of $f(x)$, labelling important features. (3 marks)

	Solution
See graph	Specific behaviours
\checkmark asymptote at $x=1$	
\checkmark gives correct shape	
$\checkmark x$-int at $x=2$	

(b) Determine the value of m if $f(m)=1$.

	Solution
$1=\log _{a}(m-1)$	
$m-1=a$	
$m=a+1$	Specific behaviours
\checkmark equates $f(m)$ to 1	
\checkmark solves for m	

(c) Determine the coordinates of the x-intercept of $f(x+b)+c$, where b and c are positive real constants.
(3 marks)

0
$0=\log _{a}(x-1+b)+c$
$-c=\log _{a}(x-1+b)$
$a^{-c}=x-1+b$
$x=a^{-c}+1-b$
coordinates are: $\left(a^{-c}+1-b, 0\right)$
Specific behaviours
\checkmark equates new function to zero
\checkmark solves for x
\checkmark states coordinates

Question 9

The concentration, C, of a drug in the blood of a patient t hours after the initial dose can be modelled by the equation below.

$$
C=4 e^{-0.05 t} \mathrm{mg} / \mathrm{L}
$$

Patients requiring this drug are said to be in crisis if the concentration of the drug in their blood falls below $2.5 \mathrm{mg} / \mathrm{L}$.

A patient is given a dose of the drug at 9 am .
(a) What was the concentration in the patient's blood immediately following the initial dose?
(1 mark)

Solution
Initial dose when $t=0$ $C(0)=4 \mathrm{mg} / \mathrm{L}$
Specific behaviours

(b) What is the concentration of the drug in the patient's blood at 11.30 am ?

	Solution
$C=4 e^{-0.05(2.5)}$	
$C=3.53 \mathrm{mg} / \mathrm{L}$	Specific behaviours
\checkmark substitutes $t=2.5$	
\checkmark calculates concentration	

(c) Find the rate of change of C at 1 pm .

| Solution |
| :--- | :--- |
| $\frac{d C}{d t}=-0.2 e^{-0.05 t}$ |

(d) What is the latest time the patient can receive another dose of the drug if they are to avoid being in crisis?
(3 marks)

Solution

Solution
2.5 $=4 e^{-0.05 t}$ t $=9.4$ hours Latest time $=6: 24 \mathrm{pm}(6: 25$ too late $)$
Specific behaviours
\checkmark substitutes $C=2.5$ \checkmark solves for t \checkmark states latest time

Question 10

The following function is a probability density function on the given interval:

$$
f(x)=\left\{\begin{array}{cl}
a x^{2}(x-2) & \text { for } 0 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Find the value of a.

If pdf on domain then $\int_{0}^{2} f(x) d x=1$
$\int_{0}^{2} f(x) d x=1$
$\int_{0}^{2} a x^{2}(x-2) d x=-\frac{4 a}{3}$
$\quad \therefore-\frac{4 a}{3}=1$
$\quad \therefore a=-\frac{3}{4}$
\checkmark uses integration for domain $=1$ \checkmark calculates integration \checkmark finds a

(b) Find the probability that $x \geq 1 \cdot 2$.

	Solution
$\int_{1.2}^{2} \frac{-3 x^{2}(x-2)}{4} d x$	
$=0.5248$	Specific behaviours
\checkmark uses correct integral	
\checkmark calculates probability	

(c) Find the median of the distribution.
(2 marks)

Solution

Solve $\int_{0}^{m} f(x) d x=0.5$ over domain $0 \leq x \leq 2$

$$
\int_{0}^{m} f(x) d x=-\frac{3 m^{4}}{16}+\frac{m^{3}}{2}
$$

for median: $-\frac{3 m^{4}}{16}+\frac{m^{3}}{2}=0.5$

$$
m=1.2285
$$

Specific behaviours

uses correct integral
determines $m=1.2285$

Question 11

Ava is flying a drone in a large open space at a constant height of 5 metres above the ground. She flies the drone due north so that it passes directly over her head and then, sometime later, reverses it direction and flies the drone due south so it passes directly over her again. With $t=0$ defined as the moment when the drone first flies directly above Ava's head, the velocity of the drone, at time t seconds, is given by:

$$
v=2 \sin \left(\frac{t}{3}+\frac{\pi}{6}\right) \mathrm{m} / \mathrm{s} \quad 0 \leq t \leq 16
$$

(a) Determine $x(t)$, the displacement of the drone at t seconds, where $x(0)=0$. (3 marks)

$\int 2 \sin \left(\frac{t}{3}+\frac{\pi}{6}\right) d t$
$=-6 \cos \left(\frac{t}{3}+\frac{\pi}{6}\right)+C$
Solve: $-6 \cos \left(\frac{0}{3}+\frac{\pi}{6}\right)+C=0$
$C=3 \sqrt{3}$ OR 5.196152423
$\therefore x(t)=-6 \cos \left(\frac{t}{3}+\frac{\pi}{6}\right)+5.196 \quad$ OR $\quad x(t)=-6 \cos \left(\frac{t}{3}+\frac{\pi}{6}\right)+3 \sqrt{3}$
\checkmark Specific behaviours
\checkmark recognises $x(t)$ involves a constant term and equates $x(0)$ to 0
\checkmark solves for C and states $x(t) \quad$

(b) Where is the drone in relation to the pilot after 16 seconds?

Solution $x(16)=-6 \cos \left(\frac{16}{3}+\frac{\pi}{6}\right)+3 \sqrt{3}$ $=-0.266975$
The drone is $0.27 \mathrm{~m}(27 \mathrm{~cm})$ due south of the pilot.
Specific behaviours
\checkmark evaluates displacement at $t=16$ \checkmark interprets solution

Question 11 (continued)
(c) At a particular time, the drone is heading due south and it is decelerating at $0.5 \mathrm{~m} / \mathrm{s}^{2}$. How far has the drone travelled from its initial position directly above Ava's head until this particular time?

$\begin{aligned} a(t) & =\frac{2}{3} \cos \left(\frac{t}{3}+\frac{\pi}{6}\right) \\ -0.5 & =\frac{2}{3} \cos \left(\frac{t}{3}+\frac{\pi}{6}\right) \\ t & =5.6858 \text { or } 10.0222 \end{aligned}$ heading south at $t=10.0222$ $\begin{aligned} \text { distance travelled } & =\int_{0}^{10.0222}\left\|2 \sin \left(\frac{t}{3}+\frac{\pi}{6}\right)\right\| d t \\ & =12.696 \end{aligned}$ The drone has travelled 12.696 metres. Specific behaviours \checkmark equates derivative to $-0.5 \mathrm{~m} / \mathrm{s}^{2}$ \checkmark recognises 10.02 s is when the drone is heading south \checkmark determines distance travelled	

Question 12
The manager of the mail distribution centre in an organisation estimates that the weight, $x(\mathrm{~kg})$, of parcels that are posted is normally distributed, with mean 3 kg and standard deviation 1 kg .
(a) What percentage of parcels weigh more than 3.7 kg ?

$X \sim N(3,1)$
$P(X>3.7)=0.24196$
24.2% are greater than 3.7 kg.
Specific behaviours
\checkmark states weight required greater than 3.7 kg
\checkmark obtains the correct percentage

(b) Twenty parcels are received for posting. What is the probability that at least half of them weigh more than 3.7 kg ?
(3 marks)

Solution

Let the random variable M denote the number of parcels that weigh more than 3.7 kg . Then $M \sim \operatorname{Bin}(20,0.24196)$.
$P(M \geq 10)=0.01095$

Specific behaviours

\checkmark states the distribution as binomial
\checkmark determines the correct parameters of the distribution
\checkmark obtains the correct probability
The cost of postage, (\$) y, depends on the weight of a parcel as follows:

- a cost of $\$ 5$ for parcels below 1 kg
- a variable cost of $\$ 1.50$ for every kilogram or part thereof above 1 kg to a maximum of 4 kg
- a cost of $\$ 12$ for parcels above 4 kg .
(c) Complete the probability distribution table for Y.

x	≤ 1	$1<x \leq 2$	$2<x \leq 3$	$3<x \leq 4$	$x>4$
y	$\$ 5$	$\$ 6.50$	$\$ 8$	$\$ 9.50$	$\$ 12$
$P(Y=y)$	$\mathbf{0 . 0 2 2 7 5}$	$\mathbf{0 . 1 3 5 9 1}$	$\mathbf{0 . 3 4 1 3 4}$	$\mathbf{0 . 3 4 1 3 4}$	$\mathbf{0 . 1 5 8 6 6}$
	$\mathbf{(a c c e p t}$				
$\mathbf{0 . 0 2 1 4 0)}$					

Solution
See table Specific behaviours
\checkmark obtains two correct values of y
\checkmark obtains the other two correct values of y
\checkmark obtains two correct probabilities
\checkmark obtains the remaining correct probabilities

Question 12 (continued)
(d) Calculate the mean cost of postage per parcel.

Solution That is, $\$ 8.8787$ is the mean cost of postage per parcel. Specific behaviours $\checkmark 0.02275+6.5 \times 0.13591+8 \times 0.34134+9.50 \times 0.34134+12 \times 0.15866$ \checkmark \checkmark obtains the correct expression for the mean

(e) Calculate the standard deviation of the cost of postage per parcel.

$\sigma^{2}=(5-8.87)^{2} \times 0.02275+(6.5-8.87)^{2} \times 0.13591+(8-8.87)^{2} \times 0.34134$
$+(9.5-8.87)^{2} \times 0.34134+(12-8.87)^{2} \times 0.15866$
$=3.052310889$
$\therefore \sigma=1.7470864$
\quad Specific behaviours
\checkmark substitutes into variance formula correctly
\checkmark calculates the variance correctly
\checkmark calculates the standard deviation correctly

(f) If the cost of postage is increased by 20% and a surcharge of $\$ 1$ is added for all parcels, what will be the mean and standard deviation of the new cost?
(3 marks)

Solution

The mean will increase by 20% to $1.2 \times 8.874535+1=11.64944$.
The standard deviation increases by 20% to $1.2 \times 1.747086=2.096504$.

Specific behaviours

\checkmark states new values will need to be multiplied by 1.2
\checkmark correctly determines mean
\checkmark correctly determines standard deviation
(g) Show one reason why the given normal distribution is not a good model for the weight of the parcels?

Solution
$\quad P(Y<0)=0.001349898$
There is a non-zero (small) probability that the weight can be negative, which is not
possible.
Specific behaviours
\checkmark explains that negative weights are not possible here 0

Question 13

The proportion of caravans on the road being towed by vehicles that have the incorrect towing capacity is p.
(a) Show, using calculus, that to maximise the margin of error a value of $\hat{p}=0.5$ should be used. Note: As z and n are constants, the standard error formula can be reduced to $E=\sqrt{\hat{p}(1-\hat{p})}$.

$E=\sqrt{\hat{p}(1-\hat{p})}$
$\frac{d E}{d \hat{p}}=\frac{(1-2 \hat{p})}{2 \sqrt{\hat{p}(1-\hat{p})}}$
$0=1-2 \hat{p}$
$\hat{p}=0.5$
$\left.\frac{d^{2} E}{d \hat{p}^{2}}\right\|_{\hat{p}=0.5}=-2 \Rightarrow$ maximum
\checkmark differentiates E wrt \hat{p}
\checkmark equates derivative to zero and solves for \hat{p}
\checkmark uses second derivative or sign test to confirm maximum

(b) A consulting firm wants to determine p within 8% with 99% confidence. How many towing vehicles should be tested at a random check?
(3 marks)

Solution
z value for $99 \%=2.576$
E for sample proportion $E=z \sqrt{\frac{p(1-p)}{n}}$
and $E=0.08$
$0.08=2.576 \sqrt{\frac{0.5(1-0.5)}{n}}$
$\quad n=259.21$
Hence 260 vehicles should be tested.
\checkmark uses $\hat{p}=0.5$ and z value Specific behaviours \checkmark equates standard error to 0.08 \checkmark solves for n and rounds up to 260

Question 13 (continued)

(c) Six months later, the consulting firm carries out a random sampling of towing vehicles. A 99\% confidence interval calculated for the proportion of vehicles with incorrect towing capacity is $(0.342,0.558)$. Determine the number of vehicles in the sample that have an incorrect towing capacity.
(4 marks)

(a) The table below examines the values of $\frac{a^{h}-1}{h}$ for various values of a as h approaches zero. Complete the table, rounding your values to five decimal places.

h	$a=2.60$	$a=2.70$	$a=2.72$	$a=2.80$
0.1	1.00265	$\mathbf{1 . 0 4 4 2 5}$	1.05241	1.08449
0.001	0.95597	0.99375	$\mathbf{1 . 0 0 1 1 3}$	$\mathbf{1 . 0 3 0 1 5}$
0.00001	0.95552	$\mathbf{0 . 9 9 3 2 6}$	$\mathbf{1 . 0 0 0 6 4}$	1.02962

Solution

See table

Specific behaviours

\checkmark correctly completes three table values
\checkmark correctly completes all entries and rounds to 5 dp

It can be shown that $\frac{d}{d x}\left(a^{x}\right)=a^{x} \lim _{h \rightarrow 0}\left(\frac{a^{h}-1}{h}\right)$.
(b) What is the exact value of a for which $\frac{d}{d x}\left(a^{x}\right)=a^{x}$? Explain how the above definition and the table in part (a) support your answer.

$a=e \approx 2.71828$
When $a=e$ the table shows that the value of $\lim _{h \rightarrow 0}\left(\frac{a^{h}-1}{h}\right)$ is 1.
It follows then from the definition that$\frac{d}{d x}\left(e^{x}\right)=e^{x} \times 1$ $=e^{x}$.
\quad Specific behaviours
\checkmark states $a=e$ or 2.71828 \checkmark explains table result \checkmark explains significance of table result for part (b)

Question 15

The population of mosquitos, P (in thousands), in an artificial lake in a housing estate is measured at the beginning of the year. The population after t months is given by the function, $P(t)=t^{3}+a t^{2}+b t+2,0 \leq t \leq 12$.

The rate of growth of the population is initially increasing. It then slows to be momentarily stationary in mid-winter (at $t=6$), then continues to increase again in the last half of the year.

Determine the values of a and b.

Solution

$$
\text { For HPI: } \left.\begin{array}{rl}
\left\{\begin{array}{l}
P^{\prime}(6) \\
P^{\prime \prime}(6)
\end{array}=0\right.
\end{array}\right\} \begin{aligned}
P^{\prime}(t) & =3 t^{2}+2 a t+b \\
P^{\prime \prime}(t) & =6 t+2 a \\
0 & =108+12 a+b \\
0 & =36+2 a
\end{aligned}
$$

solving gives:

$$
a=-18
$$

$$
b=108
$$

Specific behaviours

\checkmark determines first derivative
\checkmark determines second derivative
\checkmark equates first and second derivatives to zero when $t=6$
\checkmark determines the value of a
\checkmark determines the value of b

Question 16

Let $f(x)$ be a function such that $f(-2)=4, f(-1)=0, f(0)=-1, f(1)=0$ and $f(3)=2$.
Further, $f^{\prime}(x)<0$ for $-2 \leq x<0, f^{\prime}(0)=0$ and $f^{\prime}(x)>0$ for $0<x \leq 3$.
(a) Evaluate the following definite integrals:
(i) $\int_{0}^{3} f^{\prime}(x) d x$.

By the fundamental theorem of calculution
$\qquad \int_{0}^{3} f^{\prime}(x) d x=[f(x)]_{0}^{3}=f(3)-f(0)=2-(-1)=3$.
Specific behaviours
\checkmark uses the fundamental theorem of calculus \checkmark obtains the correct value for the integral

(ii)

$$
\begin{equation*}
\int_{-2}^{3} f^{\prime}(x) d x \tag{2marks}
\end{equation*}
$$

Solution
By the fundamental theorem of calculus
$\int_{-2}^{3} f^{\prime}(x) d x=[f(x)]_{-2}^{3}=f(3)-f(-2)=2-4=-2$.
Specific behaviours
\checkmark uses the fundamental theorem of calculus
\checkmark obtains the correct value for the integral

(b) What is the area bounded by the graph of $f^{\prime}(x)$ and the x axis between $x=-2$ and $x=3$? Justify your answer.

Solution
Required area is A. $A=\int_{-2}^{3}\left\|f^{\prime}(x)\right\| d x$ Since $f^{\prime}(x)$ is positive for $x>0$ and negative for $x<0$, the area is $A=\left\|\int_{0}^{3} f^{\prime}(x) d x\right\|+\left\|\int_{-2}^{0} f^{\prime}(x) d x\right\|=(2-(-1)+\|-1-4\|=8 .$
\checkmark uses the intervals where $f^{\prime}(x)$ is positive and negative
\checkmark breaks the integral over the correct intervals
calculates the correct value of the area

Question 17

Tina believes that approximately 60% of the mangoes she produces on her farm are large. She takes a random sample of 500 mangoes from a day's picking.
(a) Assuming Tina is correct and 60\% of the mangoes her farm produces are large, what is the approximate probability distribution of the sample proportion of large mangoes in her sample?

That is, $\quad \hat{p} \sim N\left(0.6, \frac{0.6 \times 0.4}{500}\right)$ $\quad \hat{p} \sim N\left(0.6,0.02191^{2}\right)$ Specific behaviours \checkmark gives the distribution as normal \checkmark gives the correct value of the mean of the variance (or standard deviation)	

(b) What is the probability that the sample proportion of large mangoes is less than 0.58 ?

$P(\hat{p}<0.58)=P\left(Z<\frac{0.58-0.6}{\sqrt{0.6 \times 0.4 / 500}}\right)=P(Z<-0.9129)=0.18066$
Specific behaviours
\checkmark calculates the z-value correctly \checkmark obtains the correct probability

(c) Tina decides to select the mangoes for her sample as they pass along the conveyor belt to be sorted. Describe briefly how Tina should select her sample.

Solution

She should use a random number generator and pick the sample using the numbers she obtains.

Specific behaviours

\checkmark indicates some random mechanism
\checkmark indicates that the mangoes are selected accordingly

A random sample of 500 contains 250 large mangoes.
(d) On the basis of this data, estimate the proportion of large mangoes produced on the farm.

(e) Calculate a 95\% confidence interval for the proportion of large mangoes produced on the farm, rounded to four decimal places.

Solution
$\begin{aligned} 95 \% \text { confidence interval }= & \left(0.5-1.96 \times \sqrt{\frac{0.5 \times 0.5}{500}}, 0.5+1.96 \times \sqrt{\frac{0.5 \times 0.5}{500}}\right) \\ = & (0.5-0.04383,0.5+0.04383) \\ & =(0.4562,0.5438) \end{aligned}$
Specific behaviours
\checkmark uses the correct value for the standard error \checkmark uses the correct z-value interval \checkmark calculates the confidence interval to 4 decimal places

(f) On the basis of your calculations, how would you respond to Tina's belief that the proportion of large mangoes produced is at least 60% ? Justify your response. (2 marks)

Solution

Since 0.6 is not contained in the 95% confidence interval, it is unlikely that Tina is correct.

Specific behaviours

\checkmark refers to 0.6 not being in the interval
\checkmark concluding that it is unlikely that Tina is correct
(g) What can Tina do to further test her belief?

Tina should take another random sample and obtain another 95\% confidence interval.
Specific behaviours
\checkmark states answer

Question 18

The ear has the remarkable ability to handle an enormous range of sound levels. In order to express levels of sound meaningfully in numbers that are more manageable, a logarithmic scale is used, rather than a linear scale. This scale is the decibel (dB) scale.

The sound intensity level, L, is given by the formula below:
$L=10 \log \left(\frac{I}{I_{0}}\right) \mathrm{dB}$ where I is the sound intensity and I_{0} is the reference sound intensity.
I and I_{0} are measured in watt $/ \mathrm{m}^{2}$.
(a) Listening to a sound intensity of 5 billion times that of the reference intensity ($I=5 \times 10^{9} I_{0}$) for more than 30 minutes is considered unsafe. To what sound intensity level does this correspond? (2 marks)

	Solution
$L=10 \log \left(\frac{5 \times 10^{9} I_{0}}{I_{0}}\right)$	
$\approx 97 \mathrm{~dB}$	
	Specific behaviours
\checkmark substitutes for L calculates level	

(b) The reference sound intensity, I_{0}, has a sound intensity level of 0 dB . If a household vacuum cleaner has a sound intensity, $I=1 \times 10^{-5} \mathrm{watt} / \mathrm{m}^{2}$ and this corresponds to a sound intensity level $L=70 \mathrm{~dB}$, determine I_{0}.

$70=10 \log \left(\frac{1 \times 10^{-5}}{I_{0}}\right)$
$I_{0}=\frac{1 \times 10^{-5}}{10^{7}}=1 \times 10^{-12} \mathrm{watt} / \mathrm{m}^{2}$
Spelution
\checkmark substitutes for L and I \checkmark determines I_{0} including units

The average sound intensity level for rainfall is 50 dB and for heavy traffic 85 dB .
(c) How many times more intense is the sound of traffic than that of rainfall?

Solution

$50=10 \log \left(\frac{I_{\text {rain }}}{I_{0}}\right) \Rightarrow \frac{I_{\text {rain }}}{I_{0}}=10^{5} \Rightarrow I_{\text {rain }}=10^{5} I_{0}$
$85=10 \log \left(\frac{I_{\text {traffic }}}{I_{0}}\right) \Rightarrow \frac{I_{\text {traffic }}}{I_{0}}=10^{8.5} \Rightarrow I_{\text {traffic }}=10^{8.5} I_{0}$
$\therefore \frac{I_{\text {trafic }}}{I_{\text {rain }}}=\frac{10^{8.5}}{10^{5}}=10^{3.5} \approx 3200$
Specific behaviours
\checkmark rearranges logarithmic equations to exponentials
\checkmark writes ratio and cancels I_{0}
\checkmark determines how many more times intense

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

