MATHEMATICS METHODS

Calculator-assumed

ATAR course examination 2016

Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Question 9

Fermium-257 is a radioactive substance whose decay rate can be modelled by the formula $P=P_{o} e^{k t}$, where P is the mass in grams and t is measured in days and $P_{o}=$ original amount and k is a constant. The time taken to decay to half of the original amount is known as half-life. The half-life of Fermium-257 is 100.5 days.
(a) Determine the value of k to three significant figures.

(b) How many days will it take for 100 grams of the substance to first decay below five grams?

(c) Determine the rate of change of the amount of Fermium on the day found in part (b).

or

Solution

Question 10
(12 marks)
A survey in Western Australia was conducted on the popularity of a calculator known as Type A. Out of 1450 Year 12 students, the survey found that 986 students used the Type A calculator.

Determine the following.
(a) A 90% confidence interval, to three decimal places, for the proportion of Western Australian Year 12 students who use the Type A calculator. What assumption was made in calculating this interval?
(3 marks)

$\hat{p}=\frac{986}{1450}=0.68$	
$s_{p}=\sqrt{\frac{0.68(1-0.68)}{1450}}=0.01225$	
$0.68-1.645(0.01225) \leq p \leq 0.68+1.645(0.01225)$	
$0.6598 \leq \hat{p} \leq 0.7001$	
$0.660 \leq \hat{p} \leq 0.700$	
Assumes that sample proportions are a normal distribution.	
Specific behaviours	
\checkmark states that sample proportions form a normal distribution.	
\checkmark determines confidence interval	
\checkmark expresses interval rounded to three decimal places	

(b) The margin of error in this confidence interval.

Another three surveys of Year 12 students were conducted on the use of Type A calculators across Australia.

Survey 2	Survey 3	Survey 4
Type A usage	Type A usage	Type A usage
1772 out of 3221	1021 out of 1566	2203 out of 3221
Year 12 students	Year 12 students	Yr 12 students

(c) Determine which of these surveys were more likely to have been taken outside of Western Australia. Justify your answer(s).

(d) Using the sample proportion of the survey at the start of the question, determine a sample size that will halve the margin of error for the proportion of Western Australian Year 12 students who use the Type A calculator, with a confidence of 90%. (4 marks)

Question 11

The area of a triangle can be found by the formula: Area $=\frac{a b \sin C}{2}$.

Using the incremental formula, determine the approximate change in area of an equilateral triangle, with each side of 10 cm , when each side increases by 0.1 cm .

Solution

$a=b=l, \quad C=\frac{\pi}{3}$
$A=\frac{1}{2} l^{2} \sin \frac{\pi}{3}=\frac{\sqrt{3}}{4} l^{2}$
$l=10, \quad \delta l=0.1$
$\delta A \approx \frac{d A}{d l} \delta l=\frac{2 \sqrt{3}}{4}(10) 0.1$
$\delta A=0.866$
Approximate change in area of 0.866 sq cm
Specific behaviours
sets up an equation for area in terms of one variable
\checkmark uses increments formula with correct parameters
\checkmark determines approximate change in area

The Richter magnitude, M, of an earthquake is determined from the logarithm of the amplitude, A, of waves recorded by seismographs.
$M=\log _{10} \frac{A}{A_{o}}$, where A_{o} is a reference value.
An earthquake in a town in New Zealand in November 2015 was estimated at 5.5 on the Richter scale, while the earthquake just north of Hayman Island measured 3.4 on the same scale. How many times larger was the amplitude of the waves in New Zealand compared to those at Hayman Island?

Solution

$M=\log _{10} \frac{A}{A_{o}}$
$A=A_{o} 10^{M}$
$\frac{A_{N Z}}{A_{H}}=\frac{10^{5.5}}{10^{3.4}}=10^{2.1}$

Specific behaviours

converts log statement to an index form
\checkmark subtracts Richter magnitudes
\checkmark determines ratio of amplitudes
(a) Determine $\frac{d}{d x}\left(x^{2} \ln x\right)$.

	Solution
$\frac{d}{d x}\left(x^{2} \ln x\right)=x^{2} \frac{1}{x}+\ln x(2 x)$	
$=x(1+2 \ln x)$	
	Specific behaviours
\checkmark uses product rule	
\checkmark determines derivative	

(b) Using your answer from part (a), show that the graph of $y=x^{2} 1 \mathrm{n} x$ has only one stationary point.
(3 marks)

$\frac{d y}{d x}=x(1+2 \ln x)$
$\frac{d y}{d x}=0, \quad \ln x=-\frac{1}{2}, \quad x \neq 0$
Only one point where derivative is zero hence only one stationary point.
Specific behaviours
\checkmark states that $x \neq 0$
\checkmark shows that only stationary point occurs for $\ln x=-\frac{1}{2}$

(c) Sketch the graph of $y=x^{2} \ln x$, showing all features.

(d) Calculate the area bounded by the graph of $y=x^{2} \ln x$, the x-axis, $x=1$ and $x=e$.
(2 marks)

Question 14

The simulation of a loaded (unfair) five-sided die rolled 60 times is recorded with the following results.

Simulation of $\mathbf{6 0}$ tosses of loaded die

(a) Calculate the proportion of prime numbers recorded in this simulation.

(b) Determine the mean and standard deviation for the sample proportion of prime numbers in 60 tosses, using the results above.
(2 marks)

$\hat{p}=0.58$
$s_{x}=\sqrt{\frac{0.58(1-0.58)}{60}}=0.0637$
Solution
determines the mean \checkmark determines standard deviation behaviours

(c) It has been decided to create a confidence interval for the proportion of prime numbers using the simulation results on page 8 . The level of confidence will be chosen from 90% or 95%. Explain which level of confidence will give the smallest margin of error. State this margin of error.
(3 marks)

Solution

Smallest margin of error occurs for smallest confidence percentage 90\%.
There is a trade-off between level of confidence and margin of error.

This simulation of 60 rolls of the die is performed another 200 times, with the proportion of prime numbers recorded each time and graphed.
(d) Comment briefly on the key features of this graph.

Solution

Graph takes the shape of a binomial distribution.
Approaches the shape of a normal distribution for large values of n.
Distribution is centred on 0.58 .
Specific behaviours
\checkmark at least one of the descriptors above
\checkmark at least two descriptors above

Question 15

A tetrahedral die has the numbers 1 to 4 on each face. When thrown, each side is equally likely to land facedown. Let X be defined as the sum of the numbers on the facedown side when the die is thrown twice.
(a) Complete the following table.
(1 mark)

Solution					
	Roll two				
	Sum of two rolls	1	2	3	4
Roll one	1	$1+1=2$	3	4	5
Roll one	2	3	4	5	6
	3	4	5	6	7
	4	5	6	7	8
Specific behaviours					
all missing	als in table				

(b) (i) Hence, or otherwise, complete the probability distribution of X, which is given by the following table.

(ii) Calculate the probability of obtaining a sum of five or less.

$P(S \leq 5)=\frac{4+3+2+1}{16}=\frac{10}{16} \quad$ Solution
Specific behaviours
uses all allowed values of sums \checkmark determines probability

(iii) Determine the mean and standard deviation for X.

Solution	
Stat Calculation	\times
One-Variable	
$\left\lvert\, \begin{array}{ll}\bar{X} & =5 \\ \sum \mathrm{X} & =5 \\ \sum \mathrm{x}^{2} & =27.5 \\ \sigma_{\mathrm{x}} & =1.5811388\end{array}\right.$	4
Mean = 5 Standard deviation=1.58	
	hav
\checkmark determines mean \checkmark determines standard deviation	

Question 16

An automated milk bottling machine fills bottles uniformly to between 247 ml and 255 ml . The label on the bottle states that it holds 250 ml .
(a) Determine the probability that a bottle selected randomly from the conveyor belt of this machine contains less than the labelled amount.
(3 marks)

	Solution

(b) Calculate the mean and standard deviation of the amount of milk in the bottles. (4 marks)

A worker selects bottles from the conveyor belt, one at a time.
(c) Determine the probability that it takes the selection of 15 bottles before five bottles containing less than the labelled amount have been selected.

Solution
\% Edit Action Interactive x
$\begin{gathered} \text { binomialPDf }\left(4,14, \frac{3}{8}\right) \\ 0.1800359861 \\ 0.1800359861 \times \frac{3}{8} \\ 0.06751349479 \end{gathered}$
Specific behaviours
uses binomial distribution for first 14 selections determines probability for the first four bottles determines final probability

Question 17

A school has analysed the examination scores for all its Year 12 students taking Methods as a subject. Let $X=$ the examination percentage scores of all the Methods Year 12 students at the school. The school found that the mean was 75 with a standard deviation of 22 .

Determine the following.
(a) $E(X+5)$
(1 mark)

	Solution
$E(X+5)=E(X)+5=80$	
	Specific behaviours
\checkmark determines mean	

(b) $\operatorname{Var}(25-2 X)$
(2 marks)

Solution
$\operatorname{Var}(25-2 X)=2^{2} \operatorname{Var}(X)=4 \times 22 \times 22=1936$
Specific behaviours
\checkmark uses a positive factor of four
\checkmark determines variance

The school has decided to scale the results using the transformation $Y=a X+b$ where a and b are constants and $Y=$ the scaled percentage scores. The aim is to change the mean to 60 and the standard deviation to 15 .
(c) Determine the values of a and b.

Solution
$15=22 a$
$a=\frac{15}{22} \approx 0.682$
$60=75 a+b$
$b=\frac{195}{22} \approx 8.864$
Specific behaviours
\checkmark determines change on standard deviation first \checkmark setermines a \checkmark determines b

The waiting times at a Perth Airport departure lounge have been found to be normally distributed. It is observed that passengers wait for less than 55 minutes, 5% of the time, while there is a 13% chance that the waiting times will be greater than 100 minutes.
(a) Determine the mean and standard deviation for the waiting times at Perth Airport departure lounge.
(5 marks)

Solution
Specific behaviours
\checkmark determines both z scores \checkmark sets up at least one equation with mean and standard deviation \checkmark sets up two equations with mean and standard deviation \checkmark solves for mean \checkmark solves for standard deviation

(b) Determine the probability that the waiting time will be between 75 and 90 minutes.
(1 mark)

Solution			
$\\|$ normCDf $(75,90,16.2382,81.709)$			
\checkmark determines probability	0.3554354358		

Question 19

The displacement in centimetres of a particle from the point O in a straight line is given by $x(t)=\frac{1}{3}\left(\frac{t}{2}-4\right)^{2}-2$ for $0 \leq t \leq 10$, where t is measured in seconds.

Calculate the:
(a) time(s) that the particle is at rest.

$\frac{d x}{d t}=\frac{1}{3}\left(\frac{t}{2}-4\right)=0$	
$\frac{t}{2}=4$	
$t=8$	
Solution	
\checkmark differentiates to determine velocity	
\checkmark solves for time that velocity equals zero	

(b) displacement of the particle during the fifth second.

(c) maximum speed of the particle and the time when this occurs.

(d) total distance travelled in the first 10 seconds.
(2 marks)

or

Solution	
	$\begin{aligned} & t=0 \\ & x=\frac{10}{3} \end{aligned}$
Specific behaviours	
\checkmark sets up a pathway of motion in first 10 seconds \checkmark determines distance travelled	

Question 20

A chocolate factory produces chocolates of which 80% are pink. Each box of chocolates contains exactly 30 pieces.
(a) Identify the probability distribution of $X=$ the number of pink chocolates in a single box and also give the mean and standard deviation.
(3 marks)

X
$X=\operatorname{Bin}\left(30, \frac{4}{5}\right)$
$u=24$
$s=\sqrt{30 \frac{4}{5}\left(1-\frac{4}{5}\right)}=2.191$
\checkmark Solution
\checkmark identifies binomial distribution \checkmark \checkmark determines mean

(b) Determine the probability, to three decimal places, that there are at least 27 pink chocolates in a randomly selected box.

Quality Control collects samples sizes of 20 boxes and counts the number of pink chocolates in total.
(c) Determine a 95\% confidence interval for the proportion of pink chocolates in a sample of 20 boxes, using the assumption that 80% of chocolates in the sample are pink.
(2 marks)

(d) Quality Control collects three samples and determines a 95\% confidence interval each time. Determine the probability that only one of these intervals will not contain the true value 0.8 of the proportion of pink chocolates
(2 marks)

(e) Using your 95\% confidence interval in part (c), determine the range in which the expected number of pink chocolates in a sample of 20 boxes would lie.

Quality Control counted the number of pink chocolates in five samples as shown below.

Sample	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Number of pink chocolates	433	463	482	473	566

(f) Decide which samples lie outside the 95% confidence interval, if any. Justify. (2 marks)

Solution
Samples 1 and 5 lie outside the range in part (e), hence lie outside proportion interval.
Specific behaviours
\checkmark uses range of chocolates from part (e)
\checkmark presents an argument using confidence intervals

Question 21

A lighthouse is situated 12 km away from the shoreline, opposite point X as seen in the diagram below. A long brick wall is placed along the shoreline and at night the light from the lighthouse can be seen moving along this wall.

Let $y=$ displacement of light on the wall from point X and $\theta=$ angle of the rotating light from the lighthouse.

The light is revolving anticlockwise at a uniform rate of three revolutions per minute ($\frac{d \theta}{d t}=6 \pi$ radians $/$ minute).

(a) Show that $\frac{d y}{d \theta}=\frac{12}{\cos ^{2} \theta}$.

Solution

$\tan \theta=\frac{y}{12}$
$y=12 \tan \theta$
$y=\frac{12 \sin \theta}{\cos \theta}$
$\frac{d y}{d \theta}=\frac{12 \cos \theta \cos \theta+12 \sin \theta \sin \theta}{\cos ^{2} \theta}$
$\frac{d y}{d \theta}=\frac{12}{\cos ^{2} \theta}$

Specific behaviours

\checkmark express y in terms of $\tan \theta$
\checkmark differentiates $\tan \theta$
\checkmark expresses as $\frac{12}{\cos ^{2} \theta}$ equivalent
(b) Determine the velocity, in kilometres per minute, of the light on the wall when the light is 5 km north of point X.
(3 marks)
(Hint: $\frac{d y}{d t}=\frac{d y}{d \theta} \times \frac{d \theta}{d t}$)

Solution

$\frac{d y}{d t}=\frac{d y}{d \theta} \frac{d \theta}{d t}$
$=\frac{12}{\cos ^{2} \theta} 6 \pi=72 \pi(\cos \theta)^{-2}$
When $x=5 \tan \theta=\frac{5}{12}$ so that $\cos \theta=\frac{12}{13} \quad \theta \approx 22.62^{\circ}$ (0.395 radians)
$\frac{d y}{d t}=72 \pi(\cos \theta)^{-2}$
$=\frac{72 \pi}{12^{2}} 13^{2}$
$=\frac{169}{2} \pi$
≈ 265.465
Velocity $=265.465$ kilometres per minute
Specific behaviours
\checkmark determines $\cos \theta$ for $x=5$
\checkmark uses chain rule with $\frac{d \theta}{d t}=6 \pi$
\checkmark determines velocity

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence.

