Government of Western Australia School Curriculum and Standards Authority

MATHEMATICS METHODS

Calculator-free

ATAR course examination 2016

Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.
(a) Given that $\log _{8} x=2$ and $\log _{2} y=5$, evaluate $x-y$.

Solution			
$8^{2}-2^{5}=32$	Specific behaviours		
determines x and y			
\checkmark recognises the inverse relationship between logarithms and exponentials			

(b) Express y in terms of x given that $\log _{2}(x+y)+2=\log _{2}(x-2 y)$.

$\log _{2}(x+y)+2=\log _{2}(x-2 y)$
$\log _{2}(x+y)+\log _{2} 4=\log _{2}(x-2 y)$
$\log _{2}(4(x+y))=\log _{2}(x-2 y)$
$4(x+y)=(x-2 y)$
$4 x+4 y=x-2 y$
$6 y=-3 x$
$y=\frac{-1}{2} x$
\checkmark expresses all terms as logarithms
\checkmark uses log laws to combine terms
\checkmark expresses y in terms of x

(a) Determine $\frac{d}{d x}\left(2 x e^{2 x}\right)$.

	Solution
$\frac{d}{d x}\left(2 x e^{2 x}\right)=2 x\left(2 e^{2 x}\right)+e^{2 x}(2)$	
$=2(2 x+1) e^{2 x}$	Specific behaviours
uses product rule	
\checkmark differentiates exponential term	

(b) Use your answer in part (a) to determine $\int 4 x e^{2 x} d x$.

$\frac{d}{d x}\left(2 x e^{2 x}\right)=\left(4 x e^{2 x}\right)+e^{2 x}(2)$
$\int \frac{d}{d x}\left(2 x e^{2 x}\right) d x=\int 4 x e^{2 x} d x+\int 2 e^{2 x} d x$
$2 x e^{2 x}=\int 4 x e^{2 x} d x+e^{2 x}$
$\int 4 x e^{2 x} d x=(2 x-1) e^{2 x}+c$
\quad Solution
\checkmark uses linearity of anti-differentiation fundamental theorem behaviours
\checkmark obtains an expression for required integral with a constant

Consider the function $f(x)=\frac{(x-1)^{2}}{e^{x}}$.
(a) Show that the first derivative is $f^{\prime}(x)=\frac{-x^{2}+4 x-3}{e^{x}}$.

Solution

$$
\begin{aligned}
& f^{\prime}(x)=\frac{e^{x} 2(x-1)-e^{x}(x-1)^{2}}{e^{2 x}} \\
& =\frac{e^{x}(x-1)(2-x+1)}{e^{2 x}} \\
& =\frac{-(x-1)(x-3)}{e^{x}} \\
& =\frac{-x^{2}+4 x-3}{e^{x}}
\end{aligned}
$$

\checkmark uses quotient rule
\checkmark simplifies expression
(b) Use your result from part (a) to explain why there are stationary points at $x=1$ an $x=3$.
(2 marks)

Solution

$$
\begin{aligned}
& f^{\prime}(x)=\frac{-(x-1)(x-3)}{e^{x}} \\
& f^{\prime}(1)=0=f^{\prime}(3)
\end{aligned}
$$

Specific behaviours

\checkmark identifies stationary points as $f^{\prime}(x)=0$
\checkmark shows that this is true for $x=1,3$

It can be shown that the second derivative is $f^{\prime \prime}(x)=\frac{x^{2}-6 x+7}{e^{x}}$.
(c) Use the second derivative to describe the type of stationary points at $x=1$ and $x=3$.
(3 marks)

Solution

$f^{\prime \prime}(x)=\frac{x^{2}-6 x+7}{e^{x}}$
$f^{\prime \prime}(1)=\frac{2}{e}$
$f^{\prime \prime}(3)=\frac{-2}{e^{3}}$
when $x=1 f^{\prime \prime}>0$ hence local minimum
when $x=3 f^{\prime \prime}<0$ hence local maximum

Specific behaviours

\checkmark evaluates second derivatives for $x=1$ and $x=3$
\checkmark uses sign to determine nature
\checkmark states nature for each stationary point

Question 4

The displacement x micrometres at time t seconds of a magnetic particle on a long straight superconductor is given by the rule $x=5 \sin 3 t$.
(a) Determine the velocity of the particle when $t=\frac{\pi}{2}$.

$x=5 \sin 3 t$
$v=\frac{d x}{d t}=15 \cos 3 t$
$v\left(\frac{\pi}{2}\right)=15 \cos \frac{3 \pi}{2}=0$
Velocity $=0$ micrometres/second
\checkmark differentiates to determine velocity
\checkmark uses chain rule
\checkmark evaluates velocity at $t=\frac{\pi}{2}$

(b) Determine the rate of change of the velocity when $t=\frac{\pi}{2}$.

Solution

$\frac{d v}{d t}=\frac{d}{d t}(15 \cos 3 t)$
$=-45 \sin 3 t$
$\frac{d v}{d t}=45 \quad, t=\frac{\pi}{2}$
Rate of change of velocity = 45 micrometres/second squared
Specific behaviours
\checkmark recognises $\frac{d v}{d t}$ as rate of change
\checkmark differentiates velocity
\checkmark evaluates rate at $t=\frac{\pi}{2}$

Let $v=$ velocity of the particle at t seconds.
(c) Determine $\int_{0}^{\frac{\pi}{2}} \frac{d v}{d t} d t$.

Solution

$\int_{0}^{\frac{\pi}{2}} \frac{d v}{d t} d t=v\left(\frac{\pi}{2}\right)-v(0)$
$=0-15$
$=-15$
Integral = -15 micrometres/second

Specific behaviours

\checkmark uses fundamental theorem
\checkmark subtracts velocities at the two limits

Question 5

Consider the graph of $y=f(x)$ below.
Let $A(x)$ be defined by the integral $A(x)=\int_{-1}^{x} f(t) d t$ for $-1 \leq x \leq 6$.
It is known that $A(2)=15, A(5)=0$ and $A(6)=8$.
Sketch on the axes below the function $A(x)$ for $-1 \leq x \leq 6$ labelling clearly key features such as x intercepts, turning points and inflection points if any.

Solution
Specific behaviours
\checkmark sketched only for $-1 \leq x \leq 6$ \checkmark both x intercepts given \checkmark local maximum shown at $(2,15)$ \checkmark endpoint labelled with A value \checkmark at least one inflection point marked near a turning point of $y=f(x)$ \checkmark both inflection points marked near both turning points of $y=f(x)$

The graphs $y=6-2 e^{x-4}$ and $y=-\frac{1}{4} x+5$ intersect at $x=4$ for $x \geq 0$.
Determine the exact area between $y=6-2 e^{x-4}, y=-\frac{1}{4} x+5$ and the y axis for $x \geq 0$.

Solution

$$
\begin{aligned}
& A=\int_{0}^{4}\left(6-2 e^{x-4}-\left[-\frac{1}{4} x+5\right]\right) d x \\
& =\int_{0}^{4}\left(-2 e^{x-4}+\frac{1}{4} x+1\right) d x \\
& =\left[-2 e^{x-4}+\frac{x^{2}}{8}+x\right]_{0}^{4} \\
& =(-2+2+4)-\left(-2 e^{-4}\right) \\
& =2\left(2+\frac{1}{e^{4}}\right)
\end{aligned}
$$

sets up an appropriate integral for area
\checkmark uses correct limits
\checkmark anti-differentiates correctly
\checkmark calculates area

Question 7

Consider the graph $y=f(x)$. Both arcs have a radius of four units.
Using the graph of $y=f(x), x \geq 0$, evaluate exactly the following integrals.
(a) $\int_{0}^{12} f(x) d x$

$36+\frac{\pi 4^{2}}{4}+4 \times 2+\frac{1}{2} 2^{2}=46+4 \pi$
Solution
\checkmark determines areas of two rectangles behaviours
\checkmark determines area of triangle and sector
\checkmark adds areas together

(b) $\int_{0}^{18} f(x) d x$

Solution $46+4 \pi-\left[\frac{1}{2} 2^{2}+\left(4 \times 6-\frac{\pi 4^{2}}{4}\right)\right]=20+8 \pi$ Specific behaviours \checkmark determines area under axis \checkmark uses signed areas to find net result

(c) Determine the value of the constant α such that $\int_{0}^{\alpha} f(x) d x=0$. There is no need to simplify your answer.

$6(\alpha-18)+26-4 \pi=46+4 \pi$
$6(\alpha-18)=(20+8 \pi)$
$\alpha=\frac{(20+8 \pi)}{6}+18$
Solution
\checkmark determines a value so that signed areas balance \checkmark derives an expression for α

Question 8

An isosceles triangle $\triangle P Q R$ is inscribed inside a circle of fixed radius r and centre O.
Let θ be defined as in the diagram below.
(a) Show that the area A of the triangle $\triangle P Q R$ is given by $A=r^{2} \sin \theta(1+\cos \theta) \cdot(2$ marks $)$

(b) Using calculus, determine the value of θ that maximises the area A of the inscribed triangle. State this area in terms of r exactly. Justify your answer. (Hint: you may need the identity $\sin ^{2} x=1-\cos ^{2} x$ in your working.)

Solution

$A=r^{2} \sin \theta(1+\cos \theta)$
$\frac{d A}{d \theta}=r^{2}[\sin \theta(-\sin \theta)+(1+\cos \theta) \cos \theta]$
$\frac{d A}{d \theta}=r^{2}\left[\cos \theta+\cos ^{2} \theta-\sin ^{2} \theta\right]$
$\frac{d A}{d \theta}=r^{2}\left[\cos \theta+\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)\right]$
$\frac{d A}{d \theta}=r^{2}\left[2 \cos ^{2} \theta+\cos \theta-1\right]=r^{2}(2 \cos \theta-1)(\cos \theta+1)$
$\frac{d A}{d \theta}=0 \quad \cos \theta=\frac{1}{2}, \theta=\frac{\pi}{3} \quad, \cos \theta \neq-1 \quad, 0<\theta<\pi$
$A=r^{2} \sin \theta(1+\cos \theta)=r^{2} \frac{\sqrt{3}}{2}\left(1+\frac{1}{2}\right)=\frac{3 \sqrt{3}}{4} r^{2}$

Specific behaviours

\checkmark differentiates area with respect to θ using calculus
\checkmark equated derivative to zero to solve for optimal value
\checkmark rearranges derivative to allow solving for θ exactly
\checkmark solves for $0<\theta<\pi$ allowing for one solution only
\checkmark states exact area for this optimal value

This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence.

Published by the School Curriculum and Standards Authority of Western Australia

