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Question 1  (5 marks) 
 
(a) Given that 8log 2x =  and 2log 5y = , evaluate .x y−  (2 marks) 
 

Solution 
2 58 2 32− =   

Specific behaviours 
 determines x and y 
 recognises the inverse relationship between logarithms and exponentials 

 
 
(b) Express y in terms of x  given that ( ) ( )2 2log 2 log 2 .x y x y+ + = −  (3 marks) 
 

Solution 
( ) ( )
( ) ( )
( )( ) ( )

( ) ( )

2 2

2 2 2

2 2

log 2 log 2

log log 4 log 2

log 4 log 2

4 2
4 4 2
6 3

1
2

x y x y

x y x y

x y x y

x y x y
x y x y
y x

y x

+ + = −

+ + = −

+ = −

+ = −

+ = −
= −
−

=

 

Specific behaviours 
 expresses all terms as logarithms 
 uses log laws to combine terms 
 expresses y in terms of x 
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Question 2 (5 marks) 
 

(a) Determine ( )22 .xd xe
dx

 (2 marks) 

 
Solution 

( ) ( ) ( )

( )

2 2 2

2

2 2 2 2

2 2 1

x x x

x

d xe x e e
dx

x e

= +

= +
 

Specific behaviours 
 uses product rule 
 differentiates exponential term 

 
 
(b) Use your answer in part (a) to determine 24 xxe dx∫ . (3 marks)  
 

Solution 

( ) ( ) ( )

( )

( )

2 2 2

2 2 2

2 2 2

2 2

2 4 2

2 4 2

2 4

4 2 1

x x x

x x x

x x x

x x

d xe xe e
dx

d xe dx xe dx e dx
dx
xe xe dx e

xe dx x e c

= +

= +

= +

= − +

∫ ∫ ∫
∫

∫

 

Specific behaviours 
 uses linearity of anti-differentiation  
 uses fundamental theorem  
 obtains an expression for required integral with a constant 
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Question 3 (7 marks) 
 

Consider the function ( ) ( )21
x

x
f x

e
−

= . 

 

(a) Show that the first derivative is ( )
2 4 3

x

x xf x
e

− + −′ = . (2 marks) 

 
Solution 

( ) ( ) ( )

( )( )

( )( )

2

2

2

2

2 1 1

1 2 1

1 3

4 3

x x

x

x

x

x

x

e x e x
f x

e
e x x

e
x x

e
x x

e

− − −
′ =

− − +
=

− − −
=

− + −
=

 

Specific behaviours 
 uses quotient rule 
 simplifies expression 

 
 
(b) Use your result from part (a) to explain why there are stationary points at 1x =  an 3x = . 

(2 marks) 
 

Solution 

( ) ( )( )

( ) ( )

1 3

1 0 3

x

x x
f x

e
f f

− − −
′ =

′ ′= =
 

Specific behaviours 
 identifies stationary points as ( ) 0f x′ =   
 shows that this is true for 1,3x =   
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It can be shown that the second derivative is ( )
2 6 7 .x

x xf x
e

− +′′ =  

 
(c)  Use the second derivative to describe the type of stationary points at 1x =  and 3x = . 
 (3 marks) 
 

Solution 

( )

( )

( )

2

3

6 7

21

23

x
x xf x

e

f
e

f
e

− +′′ =

′′ =

−′′ =

 

when 1x =  0f ′′ >  hence local minimum 
when 3x =  0f ′′ <  hence local maximum 

Specific behaviours 
 evaluates second derivatives for 1x =  and 3x =  
 uses sign to determine nature 
 states nature for each stationary point 
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Question 4  (8 marks) 
 
The displacement x  micrometres at time t  seconds of a magnetic particle on a long straight 
superconductor is given by the rule 5sin 3 .x t=  
 

(a) Determine the velocity of the particle when .
2

t π
=  (3 marks) 

 
Solution 

5sin 3

15cos3

315cos 0
2 2

x t
dx t
dt

v

v

=

=

  = =


=




π π

 

 
Velocity = 0 micrometres/second 

Specific behaviours 
 differentiates to determine velocity 
 uses chain rule 

 evaluates velocity at 
2

t π
=  

 
 

(b) Determine the rate of change of the velocity when .
2

t π
=  (3 marks) 

Solution 

( )15cos3

45sin 3

45 ,
2

dv d t
dt dt

t
dv t
dt

π

=

= −

= =

 

 
Rate of change of velocity = 45 micrometres/second squared 

Specific behaviours 

 recognises dv
dt

 as rate of change 

 differentiates velocity 

 evaluates rate at 
2

t π
=  
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Let v  = velocity of the particle at t  seconds. 

(c) Determine 
2

0

.dv dt
dt

π

∫   (2 marks) 

 
Solution 

( )
2

0

0
2

0 15
15

dv dt v v
dt

π

π = − 
 

= −
= −

∫
 

Integral = –15 micrometres/second 
Specific behaviours 

 uses fundamental theorem  
 subtracts velocities at the two limits 
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Question 5 (6 marks) 
 
Consider the graph of ( )y f x=  below. 
 

Let ( )A x  be defined by the integral ( ) ( )
1

x

A x f t dt
−

= ∫ for 1 6.x− ≤ ≤  

 

It is known that ( )2 15,A =  ( )5 0A = and ( )6 8.A =  

Sketch on the axes below the function ( )A x  for 1 6x− ≤ ≤  labelling clearly key features such 
as x intercepts, turning points and inflection points if any. 
 

Solution 

 
Specific behaviours 

 sketched only for 1 6x− ≤ ≤  
 both x intercepts given 
 local maximum shown at (2,15) 
 endpoint labelled with A value 
 at least one inflection point marked near a turning point of ( )y f x=  

 both inflection points marked near both turning points of ( )y f x=  
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Question 6 (4 marks) 
 

The graphs 46 2 xy e −= −  and 1 5
4

y x= − +  intersect at 4x =  for 0.x ≥  

 

Determine the exact area between 46 2 xy e −= − , 1 5
4

y x= − +  and the y  axis for  0.x ≥  

 
Solution 

( ) ( )

4
4

0
4

4

0
42

4

0

4

4

16 2 5
4

12 1
4

2
8

2 2 4 2

12 2

 

 

x

x

x

A e x dx

e x dx

xe x

e

e

−

−

−

−

  = − − − +    

 = − + + 
 

 
= − + + 
 

= − + + − −

 = + 
 

∫

∫

  

Specific behaviours 
 sets up an appropriate integral for area 
 uses correct limits 
 anti-differentiates correctly 
 calculates area 
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Question 7 (7 marks) 
 
Consider the graph ( ).y f x=  Both arcs have a radius of four units. 
 
Using the graph of ( )y f x= , 0,x ≥  evaluate exactly the following integrals. 
 

(a) ( )
12

0

f x dx∫   (3 marks) 

Solution 
2

24 136 4 2 2 46 4
4 2

π π+ + × + = +   

Specific behaviours 
 determines areas of two rectangles 
 determines area of triangle and sector 
 adds areas together 

 
 

(b) ( )
18

0

f x dx∫  (2 marks) 

 
Solution 

2
21 446 4 2 4 6 20 8

2 4
ππ π

  
+ − + × − = +  

  
  

Specific behaviours 
 determines area under axis 
 uses signed areas to find net result 

 
 

(c) Determine the value of the constant α  such that ( )
0

0.f x dx
α

=∫  There is no need to 

simplify your answer.  (2 marks) 
 

Solution 
( )
( ) ( )

( )

6 18 26 4 46 4

6 18 20 8

20 8
18

6

α π π

α π

π
α

− + − = +

− = +

+
= +

  

Specific behaviours 
 determines a value so that signed areas balance 
 derives an expression for α   
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Question 8  (7 marks) 
 
An isosceles triangle PQR∆  is inscribed inside a circle of fixed radius r  and centre .O  
Let θ  be defined as in the diagram below. 
 
(a) Show that the area A of the triangle PQR∆  is given by ( )2 sin 1 cos .A r θ θ= +  (2 marks) 
 

Solution 
 

 
 
 

Specific behaviours 
             determines an expression of height in terms of ,r θ  
             determines an expression for base in terms of ,r θ  
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(b) Using calculus, determine the value of θ  that maximises the area A of the inscribed 
triangle. State this area in terms of r  exactly. Justify your answer. 
(Hint: you may need the identity 2 2sin 1 cosx x= −  in your working.) (5 marks) 

 
Solution 

( )

( ) ( )

( )

( ) ( )

( )

2

2

2 2 2

2 2 2

2 2 2

2 2

sin 1 cos

sin sin 1 cos cos

cos cos sin

cos cos 1 cos

2cos cos 1 2cos 1 cos 1

10 cos , ,cos 1 ,0
2 3

3 1sin 1 cos 1
2 2

A r
dA r
d
dA r
d
dA r
d
dA r r
d
dA
d

A r r

θ θ

θ θ θ θ
θ

θ θ θ
θ

θ θ θ
θ

θ θ θ θ
θ

πθ θ θ θ π
θ

θ θ

= +

= − + +  

 = + − 

 = + − − 

 = + − = − + 

= = = ≠ − < <

 = + = +


23 3
4

r=


 

Specific behaviours 
             differentiates area with respect to θ  using calculus 
             equated derivative to zero to solve for optimal value 
             rearranges derivative to allow solving for θ  exactly 
             solves for 0 θ π< < allowing for one solution only 
             states exact area for this optimal value 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

End of questions 
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