SAMPLE COURSE OUTLINE

HUMAN BIOLOGY ATAR YEAR 12

Copyright

© School Curriculum and Standards Authority, 2015

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the <u>Creative Commons</u> <u>Attribution 4.0 International licence.</u>

Disclaime

Any resources such as texts, websites and so on that may be referred to in this document are provided as examples of resources that teachers can use to support their learning programs. Their inclusion does not imply that they are mandatory or that they are the only resources relevant to the course.

Sample course outline

Human Biology - ATAR Year 12

Unit 3 and Unit 4

Semester 1 - Homeostasis and disease

Science Inquiry Skills

Science Inquiry Skills align with the Science Understanding and Science as a Human Endeavour content of the unit and are integrated into the learning experiences.

Week	Key teaching points
1–2	 Endocrine system Endocrine glands location of endocrine glands - hypothalamus, pituitary, thyroid, parathyroid, pancreas, thymus, gonads, pineal and adrenal glands specific target organs and action of hormones secreted from endocrine glands - hypothalamus, pituitary, thyroid, parathyroid, pancreas and adrenal glands hypothalamic control of pituitary gland Hormones types of hormones water-soluble lipid-soluble synthetic hormones development using recombinant DNA for treatment of endocrine dysfunctions – diabetes mellitus, hypothyroidism and hyperthyroidism Commence Task 1: Extended response - Recombinant DNA technology and its uses
3	 Central and peripheral nervous system Division of the nervous system Central nervous system Structure and function of the CNS − cerebellum, cerebrum, medulla oblongata, hypothalamus, corpus callosum, spinal cord, meninges and cerebrospinal fluid Practical activity − Brain dissection Peripheral nervous system Autonomic and somatic Sympathetic and parasympathetic Afferent and efferent
4–5	 Task 1: Extended response - Recombinant DNA technology and its uses Receptors Function of thermoreceptors, osmoreceptors, chemoreceptors, touch and pain Practical activity – Perception of stimuli Neurons Structure and function of neurons – sensory, motor and interneuron Transmission of nerve impulses Reflex arc Practical activity – Reflexes
6	 Nervous system disorders Cell replacement therapy for treatment Alzheimer's and Parkinson's Comparison of the endocrine and nervous systems Speed of action Duration of action Nature and transmission of the message

Week	Key teaching points
	 Specificity of message Task 2: Test – Endocrine and nervous systems
7–8	 Need for homeostasis Negative feedback/stimulus response models Thermoregulation Methods of heat loss and gain Metabolic activity Conduction, convection, radiation Evaporation Methods of controlling heat loss and gain Physiological – vasoconstriction, vasodilation, shivering, sweating Behavioural Negative feedback/stimulus response model for thermoregulation Task 3: Science inquiry (practical) – Thermoregulation in the human body
9	 Regulation of blood sugar levels The liver Glycogenesis Gluconeogenesis The pancreas Insulin Glucagon The adrenal glands Glucocorticoids Adrenaline and noradrenaline Negative feedback/stimulus response models for the regulation of blood sugar levels Treatment of diabetes mellitus, including synthetic hormones and gene therapy
10	 Regulation of body fluid concentrations Methods of water loss and gain ADH and Aldosterone Thirst reflex Negative feedback/stimulus response models for the regulation of water balance Regulation of gas concentrations Negative feedback model for the control of breathing Voluntary control of breathing
11	Task 4: Test – Homeostasis Response to infection Pathogens Types of pathogens - viruses and bacteria Transmission of pathogens Direct and indirect contact Transfer by body fluids Disease-specific vectors Contaminated food and water

Week	Key teaching points
12	Task 5: Science inquiry (investigation) – Modelling the spread of pathogens External defence mechanisms against pathogens Skin Digestive tract Urogenital tract Respiratory system The ear The eye Non-specific immune response Inflammation Fever
13	 Specific immune responses antibody-mediated immunity cell-mediated immunity Treatment and prevention of pathogen induced infections Antiviral drugs Mode of action Antibiotic drugs Mode of action Vaccines Types Mode of action Production, including the use of recombinant DNA Immunity passive and active immunity herd immunity immunisation social influences on immunisation programs economic influences on immunisation programs cultural influences on immunisation programs
14	Revision
15	Task 6: Examination – Semester 1

Semester 2 – Human variation and evolution

Science Inquiry Skills

Science Inquiry Skills align with the Science Understanding and Science as a Human Endeavour content of the unit and are integrated into the learning experiences.

Week	Key teaching points
1	 Mutations Causes of gene and chromosomal mutations DNA replication Cell division Mutagens Mutations can be favourable or unfavourable for survival Causes of variation Mutations introducing new alleles Environment influence on genotypes producing a variety of phenotypes
2–4	Gene pools Gene pools and populations Cause of changes to gene pools Mutations Selection pressures Random genetic drift, including founder effect Barriers to gene flow Task 7: Science inquiry (practical) – Simulating changes to gene pools Effect of genetic diseases on gene pools Tay-Sachs disease Thalassemia Sickle-cell anaemia Practical activity – Genetic diseases and changing gene pools
5–6	 Natural selection Mechanisms underpinning evolution by natural selection Variation Isolation Struggle for existence Selection Speciation Practical activity – Natural selection Task 8: Extended response – Natural selection in humans Task 9: Test – Mutations and gene pools
7–8	Evidence for evolution Comparative biochemistry DNA (genomic and mitochondrial) and proteins Biotechnological techniques used to facilitate DNA sequencing Polymerase chain reaction (PCR) – denaturing, annealing, elongation Bacterial enzymes Gel electrophoresis Ethical considerations for interpretation and use of genetic information Practical activity – Gel electrophoresis
9	 Comparative anatomy Homologous structures Embryology Vestigial structures Practical activity: Comparative anatomy

Week	Key teaching points
10	 Bioinformatics Phylogenetic trees Task 10: Science inquiry (practical) – Our close relations
11	 Fossils Fossil formation Problems and limitations of the fossil record Application and limitations of dating methods relative dating techniques – stratigraphy and index fossils absolute dating techniques – radio-carbon and potassium-argon Practical activity – Dating fossils
12–14	Hominid evolutionary trends Classification of humans and great apes Differences between humans and great apes relative size of cerebral cortex mobility of digits locomotion prognathism and dentition Practical activity – Comparing apes and man Possible relatedness and evolutionary pathways Australopithecus afarensis Australopithecus africanus Paranthropus robustus Homo habilis Homo erectus Homo neanderthalensis Homo sapiens Practical activity – Trends in Hominid skulls Tool cultures of Homo habilis, Homo erectus, Homo neanderthalensis and Homo sapiens Trends in manufacturing techniques and materials As evidence for cognitive evolution and lifestyle Task 11: Test – Evidence for evolution and hominid evolutionary trends
15	Task 12: Examination – Semester 2