MATHEMATICS SPECIALIST

Calculator-assumed

ATAR course examination 2016

Marking Key

Marking keys are an explicit statement about what the examining panel expect of candidates when they respond to particular examination items. They help ensure a consistent interpretation of the criteria that guide the awarding of marks.

Section Two: Calculator-assumed

Question 9

Consider the integral $I=\int x \sqrt{(1+x)^{n}} d x$, where n is any positive integer.
Using the substitution $u=1+x$ and an appropriate anti-derivative, develop a simplified expression for I in terms of x and n.

Question 10

On the Argand planes below sketch the locus of the complex number $z=x+i y$ given by:
(a) $|z-2 i|=1$.

Solution

Require distance of z from $(0,2)$ to be equal to one unit i.e. a circle of radius one unit with centre $(0,2)$

Specific behaviours

\checkmark indicates a circle as the locus
\checkmark indicates the correct radius
\checkmark indicates the correct centre
(b) $\quad|z-1+i| \geq|z+1-i|$.

Solution

Require distance of z from $(1,-1)$ to be equal or greater than distance from $(-1,1)$

Specific behaviours

\checkmark indicates the points $(1,-1)$ and $(-1,1)$ correctly
\checkmark indicates the boundary position $y=x$ correctly
\checkmark indicates the correct half plane (including the boundary)
(c) For the locus $|z-2 i|=1$ from part (a), state the exact maximum value for $|z+2|$.

Question 11

A lift goes up within a high rise building so that its velocity $v(t)$ is given by the graph shown below. The maximum velocity of the lift during its ascent is $1.2 \mathrm{~ms}^{-1}$. For the first four seconds, the acceleration is given by $a(t)=k t$. For the final four seconds of its ascent, the lift decelerates at the same rate.

(a) Show that the value of the constant $k=\frac{3}{20}$.

Solution

For $0 \leq t \leq 4 \quad a(t)=k t \quad$ so $\quad v(t)=\frac{k t^{2}}{2}+c \quad$ Since $v(0)=0$ then $c=0$.
Given $v(4)=1.2, \quad 1.2=\frac{k(4)^{2}}{2} \quad \therefore \quad k=\frac{3}{20}=0.15 \quad$ i.e. $v(t)=0.075 t^{2}$

Specific behaviours

\checkmark anti-differentiates the acceleration function correctly
\checkmark uses or states that $v(0)=0$ and $v(4)=1.2$ to determine the value of k
(b) Using the incremental formula, determine the approximate change in velocity v from $t=2$ to $t=2.1$ seconds.

(c) Determine the total distance that the lift travels upwards during its ascent, correct to the nearest 0.1 m .
(3 marks)

Solution
$=2 \times \int_{0}^{4} v(t) d t+(12)(1.2)$
$=2 \times(1.6)+14.4=17.6$ metres
Specific behaviours \checkmark states that the distance required is the area under the velocity time graph \checkmark writes the correct expression for the distance using an integral of velocity

Question 12

The graph of $f(x)=a|x-b|+c$ is shown below.

(a) Determine the values for the constants a, b and c.

Solution

From the bounce point $(3,5) \quad b=3, c=5$
Slopes of each line are $m=-2$ and $2 \therefore a=-2$ since the graph is inverted i.e. $f(x)=-2|x-3|+5$

Specific behaviours

[^0]Consider the equation $|f(x)|=d$.
(b) If the equation $|f(x)|=d$ has exactly four solutions, state the possible value(s) for the constant d. Explain.

Solution

See above for graph of $y=|f(x)|$.
For four solutions to $|f(x)|=d$ there needs to be four points of intersection of $y=|f(x)|$ with $y=d$.
This occurs when $0<d<5$.

Specific behaviours

\checkmark indicates that $d=0$ and $d=5$ are significant values
\checkmark writes the correct interval of values for d
\checkmark explains/indicates that there will be four points of intersection with $y=|f(x)|$

Question 13

The graph of the curve $2 x=\sin (y)$ is sketched for $0 \leq y \leq \pi$.

(a) Determine the expression for $\frac{d y}{d x}$ in terms of y.

$\frac{d}{d x}(2 x)=\frac{d}{d x}(\sin y)$
i.e. $2=\cos y \cdot \frac{d y}{d x} \quad \therefore \quad \frac{d y}{d x}=\frac{2}{\cos y}$
Specific behaviours
\checkmark uses implicit differentiation correctly \checkmark obtains the derivative in terms of y

(b) Determine the area of the region bounded by the curve $2 x=\sin (y)$ and the y axis.
(3 marks)

Area $=\int_{0}^{\pi} x \cdot d y$ $=\int_{0}^{\pi}\left(\frac{1}{2} \sin y\right) d y$ $=1$ square unit (using CAS) Specific behaviou \checkmark writes a definite integral using the correct limits \checkmark writes the integrand correctly \checkmark evaluates the area correctly	

Question 14

Consider the complex equation $z^{4}=-16 i$.
(a) Solve the equation giving all solutions in the form $r \operatorname{cis} \theta$ where $-\pi<\theta \leq \pi$. (4 marks)

$z^{4}=-16 i=16 \operatorname{cis}\left(-\frac{\pi}{2}\right)$
Solutions are $: \quad z=16^{\frac{1}{4}} \operatorname{cis} \frac{1}{4}\left(-\frac{\pi}{2}+2 \pi k\right)=2 \operatorname{cis}\left(-\frac{\pi}{8}+\frac{\pi}{2} k\right)$ where $k=0,1,2,3$
i.e. $\quad z_{0}=2 \operatorname{cis}\left(-\frac{\pi}{8}\right)=2 \operatorname{cis}\left(-22.5^{o}\right), \quad z_{1}=2 \operatorname{cis}\left(-\frac{\pi}{8}+\frac{\pi}{2}\right)=2 \operatorname{cis}\left(\frac{3 \pi}{8}\right)=2 \operatorname{cis}\left(67.5^{\circ}\right)$
$\quad z_{2}=2 \operatorname{cis}\left(\frac{7 \pi}{8}\right)=2 \operatorname{cis}\left(157.5^{o}\right), \quad z_{3}=2 \operatorname{cis}\left(-\frac{5 \pi}{8}\right)=2 \operatorname{cis}\left(-112.5^{o}\right)$
\checkmark converts $-16 i$ to polar form correctly
\checkmark forms the correct expression for the roots using De Moivre's Theorem
\checkmark states one root correctly
\checkmark states all 4 roots correctly

Let w be the solution to $z^{4}=-16 i$ that has the least positive argument.
(b) Determine the value for $\arg (w+2)$.

Solution
$w=2 \operatorname{cis}\left(\frac{3 \pi}{8}\right)$ Consider $w+2$ being represented by $\overrightarrow{O B}$ in the Argand plane.
$\triangle O A B$ is isosceles as $O A=A B=2$.

If a candidate considers the 'least positive' to mean the 'MOST NEGATIVE':

Question 15

A four metre long water tank, open at the top, is in the shape of a triangular prism. The triangular face is a right isosceles triangle with congruent sides of one metre length.

Initially the tank is completely full with water, but it develops a leak and loses water at a constant rate of 0.08 cubic metres per hour.

Let $h=$ the depth of water, in metres, in the tank after t hours.
(a) Show that the volume of water in the tank V cubic metres, is given by the expression

$$
V(h)=4 h^{2} .
$$

$h=x \cos 45^{\circ} \quad$ i.e. $x=\sqrt{2} h$
Volume $V=\frac{1}{2}\left(x^{2}\right)(4)=2 x^{2}=2(\sqrt{2} h)^{2}$
i.e. $V(h)=4 h^{2}$
orea of triangle $A=\frac{1}{2} b h \quad$ where $\quad b=2 h$
Volume $V=\frac{1}{2}(2 h)(h)(4)=4 h^{2}$
\quad Specific behaviours
\checkmark uses an appropriate method to relate dimensions
\checkmark forms the area of the triangular base correctly

(b) Determine the rate of change of the depth, correct to the nearest 0.01 metres per hour, when the depth is 0.6 metres.

Solution $d t$
$\therefore \frac{d V}{d h} \times \frac{d h}{d t} \quad$ i.e. $\quad-0.08=8 h \times \frac{d h}{d t}$
$\therefore \quad \frac{d h}{d t}=-0.02 \mathrm{~m} / \mathrm{hr}$ (two decimal places)
Hence the depth is decreasing at approximately 2 cm per hour when the depth is 0.6 metres.
\checkmark uses the chain rule correctly to relate the volume and depth rates
$\checkmark \checkmark$ substitutes the values for $\frac{d V}{d t}$ and h correctly
\checkmark calculates the depth rate with the correct units (no penalty for incorrect rounding)

Assume that the rate of leakage stays constant at 0.08 cubic metres per hour.
(c) Show that the differential equation that relates $\frac{d h}{d t}$ with the depth h is given by

$$
\begin{equation*}
\frac{d h}{d t}=-\frac{1}{100 h} \tag{1mark}
\end{equation*}
$$

From $-0.08=8 h \times \frac{d h}{d t}$
Differential equation: $\frac{d h}{d t}=-\frac{0.01}{h}=-\frac{1}{100 h}$
\checkmark Specific behaviours
\checkmark forms the differential equation correctly

(d) Hence determine the relationship for the depth h at any time t hours.

Solution

When $t=0, h=\frac{1}{\sqrt{2}}$
From $\frac{d h}{d t}=-\frac{0.01}{h}, \quad \int h d h=\int-0.01 d t$
i.e. $\frac{h^{2}}{2}=-0.01 t+c$
$\therefore \frac{\left(\frac{1}{\sqrt{2}}\right)^{2}}{2}=-0.01(0)+c$
$\therefore c=0.25$
$\frac{h^{2}}{2}=-0.01 t+0.25$
$h^{2}=-0.02 t+0.5$
$\therefore h(t)=\sqrt{0.5-0.02 t}$

Specific behaviours

\checkmark determine the initial value for h correctly
\checkmark separates the variables correctly
\checkmark anti-differentiates correctly
\checkmark determines the relationship between h and t correctly

Question 16

A particle's position vector $\underset{\sim}{r}(t)$ is given by $\underset{\sim}{r}(t)=\binom{4 \cos 2 t}{2 \cos t}$ centimetres where t is measured in seconds. A plot of the path of the particle is shown below.

(a) Express the path of the particle as a Cartesian equation.

$\binom{x}{y}=\binom{4 \cos 2 t}{2 \cos t} \quad \therefore \quad x=4 \cos 2 t, \quad y=2 \cos t \quad$ i.e. $\cos t=\frac{y}{2}$
$\therefore \quad x=4\left(2 \cos ^{2} t-1\right)=8 \cos ^{2} t-4$
$\therefore \quad x=8\left(\frac{y}{2}\right)^{2}-4$
i.e. $x=2 y^{2}-4 \quad$ where $-2 \leq y \leq 2$ and/or $-4 \leq x \leq 4$
Specific behaviours
\checkmark uses the cosine double angle identity correctly to eliminate t correctly
\checkmark states a domain or range restriction correctly

(b) Determine the speed of the particle, correct to 0.01 cm per second, when it first reaches the point where $x=-2$.

Solution
When $x=-2 \quad-2=4 \cos 2 t$ i.e. $\cos 2 t=-\frac{1}{2} \quad$ i.e. $2 t=\frac{2 \pi}{3}$ i.e. when $t=\frac{\pi}{3}=1.047 \ldots \mathrm{sec}$ $\begin{gathered} \underset{\sim}{v}(t)=\frac{d r}{d t}=\binom{-8 \sin 2 t}{-2 \sin t} \quad \therefore \underset{\sim}{v}\left(\frac{\pi}{3}\right)=\binom{-4 \sqrt{3}}{-\sqrt{3}}=\binom{-6.928 . .}{-1.732 . .} \\ \begin{array}{r} \text { Speed }=\left\|\underset{\sim}{v}\left(\frac{\pi}{3}\right)\right\| \\ =\sqrt{(4 \sqrt{3})^{2}+(\sqrt{3})^{2}} \\ =\sqrt{51}= \\ \quad 7.14 \mathrm{~cm} / \mathrm{sec} \text { (two decimal places) } \\ \text { Specific behaviours } \end{array} \end{gathered}$ \checkmark determines the value of t when $x=-2$ \checkmark differentiates correctly to determine the velocity vector \checkmark states that the speed is the magnitude of velocity \checkmark evaluates the speed correctly (no penalty for incorrect rounding)

(c) Write the expression, in terms of trigonometric functions, for the distance the particle will travel along its path in travelling from point A to point B. Do not evaluate this expression.

Solution

At point $A(4,2) t=0$, at point $B(4,-2) t=\pi$.
Distance along the path $=\int_{0}^{\pi}\left|\frac{d \underset{\sim}{d}}{d t}\right| d t=\int_{0}^{\pi}|\underset{\sim}{\mid}(t)| d t$
$=\int_{0}^{\pi}$ Speed $(t) d t$
$=\int_{0}^{\pi} \sqrt{64 \sin ^{2} 2 t+4 \sin ^{2} t} d t$

Specific behaviours

\checkmark determine the correct values of t for points A, B
\checkmark writes a definite integral using the lower limit $t(A)$ and upper limit $t(B)$
\checkmark writes the expression for the speed function correctly in terms of t

Question 17

The diagram shows a circle with equation $x^{2}+y^{2}=16$ with points A, B being the horizontal intercepts of this circle. $D C$ is the tangent to the circle at point D, intersecting the x axis at point C. Point D has coordinates $(2,-2 \sqrt{3})$.

(a) Show that the equation for the tangent at point D can be written in the form
$\sqrt{3} y=x-8$.

Solution
$\frac{d}{d x}\left(x^{2}+y^{2}\right)=0 \quad$ i.e. $2 x+2 y \frac{d y}{d x}=0 \quad$ i.e. $\quad \frac{d y}{d x}=-\frac{x}{y}$
$\therefore m_{D C}=-\frac{2}{(-2 \sqrt{3})}=\frac{1}{\sqrt{3}} \quad$ Equation tangent: $y+2 \sqrt{3}=\frac{1}{\sqrt{3}}(x-2)$
i.e. $\sqrt{3} y+6=(x-2) \quad$ (multiplying each side by $\sqrt{3}$)
i.e. $\sqrt{3} y=x-8$
Specific behaviours
\checkmark determines the gradient correctly \checkmark forms the equation for the tangent correctly

or

(b) Determine the coordinates of point C.

Solution

At point $C, y=0 \quad \therefore \sqrt{3}(0)=x-8$
$\therefore x=8$ i.e. C has coordinates $(8,0)$.

Specific behaviours

\checkmark determines the correct x coordinate
The region bounded by the arc $A D$, the line segment $\overline{D C}$ and the x axis is rotated about the x axis.
(c) Determine the volume of the resulting solid, correct to the nearest 0.01 cubic units.
(4 marks)

Question 18

A first-order differential equation has a slope field as shown in the diagram below.

(a) Determine the general differential equation that would yield this slope field. (3 marks)

Solution

Solution	
General differential equation $\frac{d y}{d x}=a-b x \quad$ where $a, b>0$	
Specific behaviours	
\checkmark writes a linear function for the slope field	
\checkmark indicates that the linear function has a positive vertical intercept	
\checkmark indicates that the linear function has a negative gradient	

The slope field at point $A(1,2)$ has a value of 0.5 .
(b) Determine the equation for the curve $y=f(x)$ containing point A.

Solution

Clearly for $x=2, \frac{d y}{d x}=0=a-b(2) \quad$ i.e. $a=2 b$
Given $x=1, \frac{d y}{d x}=0.5=a-b(1)$ i.e. $a-b=0.5$
Solving gives $a=1, b=0.5 \quad \therefore \quad \frac{d y}{d x}=1-0.5 x$
Hence $y=x-\frac{x^{2}}{4}+c \quad$ Since $(1,2) \in f \quad$ then $\quad 2=1-\frac{1}{4}+c$
i.e. $c=\frac{5}{4} \quad \therefore y=x-\frac{x^{2}}{4}+\frac{5}{4}$ is the equation containing point A.

Specific behaviours

\checkmark forms equations to represent the given slope values
\checkmark determines the values for a, b i.e. determines the slope field equation
\checkmark anti-differentiates correctly
\checkmark determines the specific equation for $y=f(x)$ containing A

Question 19

The volume of water used by the SavaDaWater company to top up an ornamental pool has been observed to be normally distributed with mean $\mu=175$ litres and standard deviation $\sigma=15$ litres.

The ornamental pool is topped up 50 times. Determine the probability that the:
(a) sample mean volume will be between 173 and 177 litres.

Solution

Let $\bar{W}=$ the sample mean from 50 times the pool is topped up (litres)

$$
=N\left(175, \sigma_{\bar{W}}^{2}\right) \text { where } \sigma_{\bar{w}}=\frac{15}{\sqrt{50}}=2.1213 \ldots
$$

Require $P(173<\bar{W}<177)=0.6542$

Specific behaviours

\checkmark states that the sample mean is a normal random variable
\checkmark states the correct parameters for the normal random variable
\checkmark determines the correct probability
(b) total volume of water used is less than 8.96 kilolitres.

For a total of 8.96 kL , the sample mean $\bar{W}=\frac{8960}{50}=179.2$ litres
Require $P(\bar{W}<179.2)=0.9761$
Specific behaviours
\checkmark calculates the sample mean correctly for the total 8.96 kL
\checkmark writes the correct event in terms of the required sample mean
\checkmark determines the correct probability

Water is a scarce commodity and accuracy is required. The pool is topped up 50 times and the sample mean obtained is denoted by \bar{W}.
(c) If it is required that $P(a \leq \bar{W} \leq b)=0.99$, then determine the values of a and b, each correct to 0.1 litres.
(3 marks)

Solution
As $\bar{W}=N\left(175, \sigma_{\bar{W}}^{2}\right)$ where $\sigma_{\bar{W}}=\frac{15}{\sqrt{50}}=2.1213 \ldots$
Given $P(-k<z<k)=0.99, k=2.5758$
Interval : $175-2.5758\left(\sigma_{\bar{W}}\right)<\bar{W}<175+2.5758\left(\sigma_{\bar{W}}\right)$
i.e. $169.536<\bar{W}<180.464$
i.e. the sample mean 99% confidence interval is 169.5 litres to 180.5 litres
Specific behaviours
\checkmark uses the correct parameters for the distribution of \bar{W}
\checkmark determines the value for k for the confidence interval
\checkmark states the interval correct to 0.1 litres

(d) If the probability for the mean amount of water used differs from μ by less than five litres is 96%, find n, the number of waterings that need to be measured.

Solution

$\sigma_{\bar{w}}=\frac{15}{\sqrt{n}} \quad$ Require $P(-k<z<k)=0.96 \quad \therefore k=2.0537$
Hence $2.0537\left(\frac{15}{\sqrt{n}}\right)<5$
Solving gives $n>37.96$
i.e. we require at least 38 waterings to have the mean differ by less than five litres

Specific behaviours

\checkmark determines the standard z score that represents 96% confidence
\checkmark forms the correct inequality to solve for n
\checkmark states the correct minimum integer value for n

A rival company called WolliWorks takes over the watering of the ornamental pool. Over 36 consecutive days, it was observed that the WolliWorks company used a total of 6.57 kilolitres. The standard deviation for the 36 days was also 15 litres.

A representative from the SavaDaWater company states that 'WolliWorks are using significantly more water than we did when we were watering this pool. They are wasting water'.
(e) Perform the calculations necessary to comment on this claim.

Solution

Let $\mu_{w}=$ the population mean for the Waterworks company (litres)
For the WolliWorks total of 6570 litres, this gives $\bar{W}=182.5$ litres
We will estimate μ_{w} as $N\left(182.5, \sigma_{\bar{W}}^{2}\right)$ where $\sigma_{\bar{w}}=\frac{15}{\sqrt{36}}=2.5$
Confidence Interval for $\mu_{w} 95 \%$ level $182.5-1.96\left(\sigma_{\bar{w}}\right)<\mu_{w}<182.5+1.96\left(\sigma_{\bar{w}}\right)$
i.e. $177.6<\mu_{w}<187.4$

Confidence Interval for $\mu_{w} 99 \%$ level $182.5-2.58\left(\sigma_{\bar{w}}\right)<\mu_{w}<182.5+2.58\left(\sigma_{\bar{w}}\right)$ i.e. $176.0<\mu_{w}<189.0$

The SavaDaMoney population mean $\mu=175$ is outside the confidence interval using $\bar{W}=182.5$ and $\sigma=15$. i.e. the claim is vindicated.
i.e. the WolliWorks company IS using significantly more water. Whether they are wasting water cannot be determined from the given data.

Specific behaviours
\checkmark determines the expected variation using $n=36$
\checkmark determines an appropriate confidence interval for the WolliWorks population mean
\checkmark states that the SavaDaMoney population mean 175 is outside the confidence interval \checkmark concludes correctly by writing a comment about the claim

Question 20

A laser pointer at point S directs a highly focused beam of light towards a mirror. The beam bounces off the mirror at point B and is then reflected away from the mirror toward point R.

The mirror's surface is given by the equation $\underset{\sim}{r} \cdot(\underset{\sim}{j}+2 \underset{\sim}{k})=9$ and the laser pointer is positioned at point S with position vector $-2 \underset{\sim}{i}+3 \underset{\sim}{j}+6 \underset{\sim}{k}$. The laser pointer is held so that the beam is pointed in the direction $\underset{\sim}{d}=\underset{\sim}{i}+\underset{\sim}{j}-\underset{\sim}{k}$.

(a) Determine the position vector for point B.

Solution Equation for path $\overrightarrow{S B}: \underset{\sim}{r}=\left(\begin{array}{c}-2 \\ 3 \\ 6\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)=\left(\begin{array}{c}-2+\lambda \\ 3+\lambda \\ 6-\lambda\end{array}\right)$ Intersection of $\overrightarrow{S B}$ with mirror plane $y+2 z=9:\left(\begin{array}{c}-2+\lambda \\ 3+\lambda \\ 6-\lambda\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)=9$ i.e. $1(3+\lambda)+2(6-\lambda)=9 \quad$ Solving gives $\quad \lambda=6$. Hence point B has position vector $\left(\begin{array}{l}4 \\ 9 \\ 0\end{array}\right) \quad$ i.e. $4 \underset{\sim}{i}+9 \underset{\sim}{j}$. Specific behaviours determines the vector equation for the incoming laser beam \checkmark substitutes correctly into the equation of the plane \checkmark solves correctly to determine the value for λ \checkmark determines the position vector for point B

The laser beam is reflected away from the mirror so that:

- the angle of the incoming beam $\overrightarrow{S B}$ to the normal of the mirror is equal to the angle of the reflected beam $\overrightarrow{B R}$ to the normal of the mirror i.e. $s \angle S B N=s \angle N B R$.
- the incoming beam $\overrightarrow{S B}$, the normal of the mirror and the reflected beam $\overrightarrow{B R}$ are all contained in one plane.

Let ${\underset{\sim}{d}}_{2}=$ the unit vector in the direction of the reflected beam $\overrightarrow{B R}$ i.e. $\left|{\underset{\sim}{d}}_{2}\right|=1$.
(b) Determine the unit vector $\hat{\sim}_{2}$ giving components correct to 0.01 .

Solution

Let ${\underset{\sim}{d}}_{1}=$ the unit vector in the direction of the incoming beam $\overrightarrow{S B}$
$\underset{\sim}{n}=$ the normal vector for the mirror surface
The normal vector $\underset{\sim}{n}$ bisects $\angle S B R$.
Consider the rhombus formed using vectors ${\underset{\sim}{d}}_{\hat{d}}$ and ${\underset{\sim}{d}}_{2}$ as the adjacent sides:

As $\left|\hat{d}_{2}\right|=1$ then $\frac{1}{3}+\left(k+\frac{1}{\sqrt{3}}\right)^{2}+\left(2 k-\frac{1}{\sqrt{3}}\right)^{2}=1^{2}$
Solving gives $k=\frac{2}{5 \sqrt{3}} \quad($ rejecting $k=0)$
$\therefore \quad \hat{d}_{2}=\left(\begin{array}{c}\frac{1}{\sqrt{3}} \\ \frac{7}{5 \sqrt{3}} \\ -\frac{1}{5 \sqrt{3}}\end{array}\right)=\left(\begin{array}{c}0.58 \\ 0.81 \\ -0.12\end{array}\right)$ (two decimal places)

Specific behaviours

\checkmark indicates the formation of a rhombus using the unit vectors and the normal vector
\checkmark forms the equation to solve for the multiple k of the normal vector
\checkmark determines the components for ${\underset{\sim}{d}}_{2}$
(b) Determine the unit vector ${\underset{\sim}{2}}_{2}$ giving components correct to 0.01 .

Alternative Solution

Let $\hat{\sim}_{1}=$ the unit vector in the direction of the incoming beam $\overrightarrow{S B}$
The normal vector $\underset{\sim}{n}$ bisects $\angle S B R$. Let $\theta=s \angle S B N=s \angle N B R$
Examine the dot product between vectors:

Let ${\underset{\sim}{d}}_{2}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ such that $a^{2}+b^{2}+c^{2}=1 \quad \ldots(1)$.
${\underset{\sim}{d}}_{2} \cdot{\underset{\sim}{n}}_{n}=\left|{\underset{\sim}{d}}_{2}\right|| | n \left\lvert\,\left(\begin{array}{l}a \\ b \\ b \\ c\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)=1(\sqrt{5}) \cos \theta \quad\right.$ i.e. $\quad b+2 c=\sqrt{5} \cos \theta$

$$
\begin{equation*}
\text { i.e. } b+2 c=\frac{1}{\sqrt{3}} \tag{2}
\end{equation*}
$$

As ${\underset{\sim}{d}}_{2} \in$ Plane then $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=x\left(\begin{array}{l}-1 \\ -1 \\ 1\end{array}\right)+y\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}-x \\ y-x \\ x+2 y\end{array}\right)$ where $x, y \in \mathbb{R}$
Writing (1),(2) in terms of $x, y: \quad(-x)^{2}+(y-x)^{2}+(x+2 y)^{2}=1 \quad \ldots$ (3)

$$
\begin{equation*}
(y-x)+2(x+2 y)=\frac{1}{\sqrt{3}} \tag{2}
\end{equation*}
$$

Using CAS: Solving gives $x=-0.5773, y=0.2309$
(Reject $x=0.5773, y=0$ since this yields ${\underset{\sim}{d}}_{2}={\underset{\sim}{d}}_{1}$)
Hence ${\underset{\sim}{d}}_{2}=\left(\begin{array}{c}0.58 \\ 0.81 \\ -0.12\end{array}\right)$ (two decimal places)

Specific behaviours

[^1]This document - apart from any third party copyright material contained in it - may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act 1968 or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act 1968 or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia licence.

Published by the School Curriculum and Standards Authority of Western Australia
 303 Sevenoaks Street
 CANNINGTON WA 6107

[^0]: \checkmark states the value of a correctly
 \checkmark states the value of b correctly
 \checkmark states the value of c correctly

[^1]: \checkmark forms the equation (2) using the dot product condition
 \checkmark forms the equation (3) to solve for the multiple x, y
 \checkmark determines the components for ${\underset{\sim}{d}}_{2}$

